Do Thi My Phuong , Bui Minh Tri , Do Minh Chau , Phan Thi Thanh Tuyen and Nguyen Xuan Loc *

* Corresponding author (nxloc@ctu.edu.vn)

Abstract

Manganese (Mn2+) contamination in domestic water in Vietnam exceeds permissible limits, posing negative impacts on public health. This study aims to evaluate the effectiveness of Mn²⁺ removal using filtration, combined with the oxidative support of NaClO. Experiments were conducted on a laboratory-scale filter column using synthetic Mn2+-contaminated water and three filter media: quartz sand, manganese sand, and zeolite. Investigated parameters included initial Mn2+ concentration (5 – 25 mg/L), NaClO concentration and volume (2 – 10 mg/L, 2 – 10 mL), reaction time (1 – 8 hours), at pH 7 ± 0.2 and temperature ~25°C. Mn2+ concentration was analyzed according to TCVN 6002:1995 using a colorimetric method with formaldoxime. Results showed that zeolite had the highest removal efficiency (97.7% without NaClO; 99.8% with NaClO) due to its catalytic formation of MnOx on the surface. Post-treatment Mn2+ concentrations were below 0.1 mg/L, meeting QCVN 01-1:2018/BYT standards. NaClO contributed to enhanced treatment efficiency, affirming its practical potential in domestic water treatment systems.

Keywords: Filtration material, manganese, Sodium hypochlorite water treatment, zeolite

Tóm tắt

Ô nhiễm mangan (Mn2+) trong nước sinh hoạt tại Việt Nam đang vượt ngưỡng cho phép, ảnh hưởng tiêu cực đến sức khỏe cộng đồng. Nghiên cứu này được thực hiện nhằm đánh giá hiệu quả loại bỏ Mn2+ trong nước bằng phương pháp lọc, kết hợp với tác dụng hỗ trợ oxy hóa của NaClO. Thí nghiệm được thực hiện trên mô hình cột lọc quy mô phòng thí nghiệm với nước nhiễm Mn2+ nhân tạo và ba loại vật liệu lọc: cát thạch anh, cát mangan và zeolit. Các thông số khảo sát bao gồm: nồng độ Mn2+ đầu vào (5 – 25 mg/L), nồng độ và thể tích NaClO (2 – 10 mg/L, 2 – 10 mL), thời gian phản ứng (1 – 8 giờ), ở pH 7 ± 0,2 và nhiệt độ ~25°C. Nồng độ Mn2+ được phân tích theo TCVN 6002:1995 bằng phương pháp trắc quang sử dụng formaldoxim. Kết quả cho thấy zeolit hiệu quả cao nhất (97,7% không NaClO; 99,8% có NaClO) nhờ xúc tác tạo MnOx trên bề mặt. Mn²⁺ sau xử lý < 0,1 mg/L, đạt QCVN 01-1:2018/BYT. NaClO góp phần nâng hiệu suất xử lý, khẳng định tiềm năng ứng dụng trong hệ thống nước sinh hoạt.

Từ khóa: Natri hypochlorite, mangan, xử lý nước, vật liệu lọc, zeolit

Article Details

References

Adam, M. R., Salleh, N. M., Othman, M. H. D., Matsuura, T., Ali, M. H., Puteh, M. H., Ismail, A., Rahman, M. A., & Jaafar, J. (2018). The adsorptive removal of chromium (VI) in aqueous solution by novel natural zeolite based hollow fibre ceramic membrane. Journal of Environmental Management, 224, 252-262.
https://doi.org/10.1016/j.jenvman.2018.07.043

Alexakis, D. E. (2021). Linking DPSIR model and water quality indices to achieve sustainable development goals in groundwater resources. Hydrology, 8(2), 90.
https://doi.org/10.3390/hydrology8020090

Agusa, T., Kunito, T., Fujihara, J., Kubota, R., Minh, T. B., Trang, P. T. K., Iwata, H., Subramanian, A., Viet, P. H., & Tanabe, S. (2005). Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi, Vietnam. Environmental Pollution, 139, 95–106.
https://doi.org/10.1016/j.envpol.2005.04.033

Cheng, Y., Xiong, W., & Huang, T. (2021). Mechanistic insights into effect of storage conditions of Fe-Mn co-oxide filter media on their catalytic properties in ammonium-nitrogen and manganese oxidative removal. Separation and purification technology, 259, 118102.
https://doi.org/10.1016/j.seppur.2020.118102

Eaton, A. (2021). Assessment of manganese occurrence in drinking water in the United States. ACS ES&T Water, 1(11), 2450-2458. https://doi.org/10.1021/acsestwater.1c00293

Dion, L.-A., Bouchard, M. F., Sauvé, S., Barbeau, B., Tucholka, A., Major, P., Gilbert, G., Mergler, D., & Saint-Amour, D. (2016). MRI pallidal signal in children exposed to manganese in drinking water. Neurotoxicology, 53, 124-131.
https://doi.org/10.1016/j.neuro.2016.01.004

Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., Holm, P. E., & Hansen, H. C. B. (2010). Sorption hysteresis of Cd (II) and Pb (II) on natural zeolite and bentonite. Journal of hazardous materials, 181(1-3), 686-691.
https://doi.org/10.1016/j.jhazmat.2010.05.067

Hoang, T. H., Bang, S., Kim, K.-W., Nguyen, M. H., & Dang, D. M. (2010). Arsenic in groundwater and sediment in the Mekong River delta, Vietnam. Environmental Pollution, 158, 2648–2658.
https://doi.org/10.1016/j.envpol.2010.05.001

Hülsmann, S., Sušnik, J., Rinke, K., Langan, S., van Wijk, D., Janssen, A. B., & Mooij, W. M. (2019). Integrated modelling and management of water resources: the ecosystem perspective on the nexus approach. Current Opinion in Environmental Sustainability, 40, 14-20.
https://doi.org/10.1016/j.cosust.2019.07.003

Jang, S. B., Choong, C. E., Pichiah, S., Young Choi, J., Yoon, Y., Choi, E. H., & Jang, M. (2022). In-situ growth of manganese oxide on self-assembled 3D-magnesium hydroxide coated on polyurethane: Catalytic oxidation mechanism and application for Mn (II) removal. Journal of Hazardous Materials, 424, 127267.
https://doi.org/10.1016/j.jhazmat.2021.127267

Jiang, S., Guo, X., Wang, Y., Wen, X., Chang, H., Wang, J., Li, G., Liang, H., & Tang, X. (2023). NaClO-based rapid sand filter in treating manganese-containing surface water: Fast ripening and mechanism. Journal of Environmental Chemical Engineering, 11(1), 109082.
https://doi.org/10.1016/j.jece.2022.109082

Knocke, W. R., Hamon, J. R., & Thompson, C. P. (1988). Soluble manganese removal on oxide‐coated filter media. Journal‐American Water Works Association, 80(12), 65-70.
https://doi.org/10.1002/j.1551-8833.1988.tb03151.x

Knocke, W. R., Occiano, S. C., & Hungate, R. (1991). Removal of soluble manganese by oxide‐coated filter media: Sorption rate and removal mechanism issues. Journal‐American Water Works Association, 83(8), 64-69. https://doi.org/10.1002/j.1551-8833.1991.tb07201.x

Le, L. T. (2019). Remarks on the current quality of groundwater in Vietnam. Environmental Science and Pollution Research, 26(2), 1163-1169.
https://doi.org/10.1007/s11356-017-9631-z

Li, G., Hao, H., Zhuang, Y., Wang, Z., & Shi, B. (2019). Powdered activated carbon enhanced Manganese (II) removal by chlorine oxidation. Water research, 156, 287-296.
https://doi.org/10.1016/j.watres.2019.03.027

Li, G., Pan, W., Zhang, L., Wang, Z., Shi, B., & Giammar, D. E. (2020). Effect of Cu (II) on Mn (II) oxidation by free chlorine to form Mn oxides at drinking water conditions. Environmental Science & Technology, 54(3), 1963-1972.
https://doi.org/10.1021/acs.est.9b06497

Lin, P., Zhang, X., Wang, J., Zeng, Y., Liu, S., & Chen, C. (2015). Comparison of different combined treatment processes to address the source water with high concentration of natural organic matter during snowmelt period. Journal of Environmental Sciences, 27, 51-58.
https://doi.org/10.1016/j.jes.2014.04.013

McCormick, N., Earle, M., Ha, C., Hakes, L., Evans, A., Anderson, L., Stoddart, A., Langille, M., & Gagnon, G. (2021). Biological and physico-chemical mechanisms accelerating the acclimation of Mn-removing biofilters. Water Research, 207, 117793.
https://doi.org/10.1016/j.watres.2021.117793

Nkele, K., Mpenyana-Monyatsi, L., & Masindi, V. (2022). Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review. Journal of Cleaner Production, 377, 134152.
https://doi.org/10.1016/j.jclepro.2022.134152

Pacini, V. A., Ingallinella, A. M., & Sanguinetti, G. (2005). Removal of iron and manganese using biological roughing up flow filtration technology. Water Research, 39(18), 4463-4475. https://doi.org/10.1016/j.watres.2005.08.027

Pankow, J. F., & Morgan, J. J. (1981). Kinetics for the aquatic environment. Environmental Science & Technology, 15(10), 1155-1164. https://doi.org/10.1021/es00092a004

Patil, D. S., Chavan, S. M., & Oubagaranadin, J. U. K. (2016). A review of technologies for manganese removal from wastewaters. Journal of Environmental Chemical Engineering, 4(1), 468-487.
https://doi.org/10.1016/j.jece.2015.11.028

Piispanen, J. K., & Sallanko, J. T. (2010). Mn (II) removal from groundwater with manganese oxide-coated filter media. Journal of Environmental Science and Health Part A, 45(13), 1732-1740. https://doi.org/10.1080/10934529.2010.513256

Schullehner, J., Thygesen, M., Kristiansen, S. M., Hansen, B., Pedersen, C. B., & Dalsgaard, S. (2020). Exposure tomanganese in drinking water during childhood and association with attention-deficit hyperactivity disorder: a nationwide cohort study. Environmental Health Perspectives, 128(9), 097004.
https://doi.org/10.1289/EHP6391

Song, Y., Jiang, J., Qin, W., Zhu, J., Gu, J., & Ma, J. (2021). Simultaneous photometric determination of oxidation kinetics and average manganese valence in manganese products in situ formed in the reactions of aqueous permanganate with model organic compounds and natural organic matters. Separation and Purification Technology, 256, 117774.
https://doi.org/10.1016/j.seppur.2020.117774

Tang, X., Wang, J., Zhang, H., Yu, M., Guo, Y., Li, G., & Liang, H. (2021). Respective role of iron and manganese in direct ultrafiltration: from membrane fouling to flux improvements. Separation and purification technology, 259, 118174.
https://doi.org/10.1016/j.seppur.2020.118174

Tang, X., Zhu, X., Huang, K., Wang, J., Guo, Y., Xie, B., Li, G., & Liang, H. (2021). Can ultrafiltration singly treat the iron-and manganese-containing groundwater? Journal of Hazardous Materials, 409, 124983. https://doi.org/10.1016/j.jhazmat.2020.124983

Thieu, V. V. D., Dinh, T. T. H., Nguyen, T. T. T., Nguyen, T. L. C., Nguyen, B. A., & Pham, A.-D. (2022). Assessment of Heavy Metal Pollution in the Surface Water of the Doi-Cho Dem-Ben Luc Rivers, Vietnam. Inżynieria Mineralna, (2), 85-90.

Wilbers, G.-J., Becker, M., Sebesvari, Z., & Renaud, F. G. (2014). Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Science of the Total Environment, 485, 653-665.
https://doi.org/10.1016/j.scitotenv.2014.03.049

Wong, J. M. (1984). Chlorination‐filtration for iron and manganese removal. Journal‐American Water Works Association, 76(1), 76-79.
https://doi.org/10.1002/j.1551-8833.1984.tb05265.x

Yang, H., Tang, X., Luo, X., Li, G., Liang, H., & Snyder, S. (2021). Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: formation of active MnOx and involved mechanisms. Journal of hazardous materials, 415, 125707. https://doi.org/10.1016/j.jhazmat.2021.125707

Yang, H., Yan, Z., Du, X., Bai, L., Yu, H., Ding, A., Li, G., Liang, H., & Aminabhavi, T. M. (2020). Removal of manganese from groundwater in the ripened sand filtration: Biological oxidation versus chemical auto-catalytic oxidation. Chemical Engineering Journal, 382, 123033. https://doi.org/10.1016/j.cej.2019.123033

Zhao, X., Liu, B., Wang, X., Chen, C., Ren, N., & Xing, D. (2020). Single molecule sequencing reveals response of manganese-oxidizing microbiome to different biofilter media in drinking water systems. Water Research, 171, 115424.
https://doi.org/10.1016/j.watres.2019.115424