Study on the fabrication of membrane distillation for treatment and reuse of textile wastewater
Abstract
This study explores the potential of membrane distillation (MD) technology as a one-step process for treating and reusing dye textile wastewater. The research synthesizes MD membranes using a novel H2O/Isoamyl alcohol non-solvent in phase inversion with varying ratios to enhance hydrophobicity, thermal stability, and evaluate water flux and dye removal efficiency. Results showed that the optimal MD membrane, with a 50:50 H2O/Isoamyl alcohol ratio, achieved high water flux (18.05 L/m2 h) and color removal efficiency (99.69%), along with a water recovery of 60.35% after 16 hours of operation. Additionally, the synthesized MD membrane demonstrated approximately 1,3 times higher water flux than the commercial MD membrane due to its greater porosity. The results demonstrated that isoamyl alcohol can improve the long-term performance of MD membranes, offering a sustainable solution for dye recovery and wastewater treatment in the textile industry by utilizing waste heat from dyeing wastewater. Overall, the synthesized MD membrane shows promise as an effective solution to address dye wastewater treatment challenges in Bao Loc's textile sector.
Tóm tắt
Nghiên cứu được thực hiện nhằm khám phá tiềm năng của công nghệ chưng cất màng (Membrane distillation-MD) như quy trình một bước để xử lý và tái sử dụng nước thải nhuộm từ ngành dệt nhuộm.Trong nghiên cứu, việc tổng hợp màng MD được tiến hành bằng cách sử dụng các dung dịch đảo pha có tỉ lệ thể tích H2O/Isoamyl alcohol khác nhau nhằm nâng cao tính kỵ nước, tăng thông lượng dòng nước thấm và hiệu suất loại bỏ độ màu. Kết quả cho thấy, màng MD tối ưu,với tỉ lệ thể tích H2O/Isoamyl alcohol là 50:50, đạt được thông lượng dòng nước thấm cao (18,05 L/m2 h) và hiệu quả loại bỏ độ màu 99,69%,cùng với hiệu suất thu hồi nước đạt 60,35% sau 16 giờ vận hành. Ngoài ra, màng MD tổng hợp trong nghiên cứu này cho thông lượng dòng nước thấm cao hơn khoảng 1,3 lần so với màng MD thương mại nhờ vào độ xốp lớn hơn.Kết quả chứng minh rằng isoamyl alcohol có thể cải thiện hiệu quả của màng MD,mang lại giải pháp bền vững cho việc thu hồi phẩm màu và xử lý nước thải trong ngành dệt bằng cách tận dụng nhiệt thải từ nước thải nhuộm.Một cách tổng thể, màng MD tổng hợp trong nghiên cứu này có triển vọng là giải pháp hiệu quả để giải quyết các thách thức về xử lý nước thải trong ngành dệt nhuộm tại thành phố Bảo Lộc hiện nay.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Alkhudhiri, A., Darwish, N., & Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2–18.
https://doi.org/10.1016/j.desal.2011.08.027
Alsebaeai, M. K., Ahmad, A. L., & Ooi, B. S. (2024). Construction of wetting resistance surface of highly hydrophobic PVDF-HFP/rGO coated supported PVDF hollow fiber composite membrane for membrane distillation. Chemical Engineering Journal, 493, 152565.
https://doi.org/10.1016/J.CEJ.2024.152565
Bamasag, A., Almatrafi, E., Alqahtani, T., Phelan, P., Ullah, M., Mustakeem, M., Obaid, M., & Ghaffour, N. (2023). Recent advances and future prospects in direct solar desalination systems using membrane distillation technology. Journal of Cleaner Production, 385. https://doi.org/10.1016/J.JCLEPRO.2022.135737
Enamul, H. M., Md Nordin, N. A. H., & Shamsuddin, M. R. (2024). Fabrication and characterization of highly hydrophobic PVDF membrane by phase inversion method with high anti-wettability characteristics. E3S Web Conf., 516.
https://doi.org/10.1051/e3sconf/202451602007
Berkessa, Y. W., Yan, B., Li, T., Jegatheesan, V., Zhang,Y. (2020). Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics. Chemosphere, 238, 124539.
https://doi.org/10.1016/j.chemosphere.2019.124539
Criscuoli, A., Zhong, J., Figoli, A., Carnevale, M. C., Huang, R., & Drioli, E. (2008). Treatment of dye solutions by vacuum membrane distillation. Water Research, 42(20), 5031–5037.
https://doi.org/10.1016/J.WATRES.2008.09.014
Fontananova, E., Jansen, J. C., Cristiano, A., Curcio, E., & Drioli, E. (2006). Effect of additives in the casting solution on the formation of PVDF membranes. Desalination, 192(1–3), 190–197.
https://doi.org/10.1016/J.DESAL.2005.09.021
Fortunato, L., Elcik, H., Blankert, B., Ghaffour, N., & Vrouwenvelder, J. (2021). Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis. Journal of Membrane Science, 636.
https://doi.org/10.1016/j.memsci.2021.119552
Ho, Q. P., Truong-Hoang, N., Lam-Phuc, T., Nguyen, T. B. T., Nguyen-Van, D., Pham, H. H. G., & Huynh, L. H. (2024). Optimization of non-thermal plasma process to remove methyl blue towards application in wastewater treatment. CTU Journal of Innovation and Sustainable Development, 16(Special issue: ICCEE SE-), 64–73.
https://doi.org/10.22144/ctujoisd.2024.283
Hou, C., Du, L., Li, Y., Guo, M., Zhou, J., & Qiao, S. (2023). Superhydrophobic PVDF membrane formed by crystallization process for direct contact membrane distillation. IScience, 26(5), 106464.
https://doi.org/10.1016/j.isci.2023.106464
Julian, H., Nurgirisia, N., Qiu, G., Ting, Y. P., & Wenten, I. G. (2022). Membrane distillation for wastewater treatment: Current trends, challenges and prospects of dense membrane distillation. Journal of Water Process Engineering, 46.
https://doi.org/10.1016/J.JWPE.2022.102615
Kusuma, N. C., Purwanto, M., Sudrajat, M. A., Jaafar, J., Othman, M. H. D., Aziz, M. H. A., Raharjo, Y., & Qtaishat, M. R. (2021). Fabrication and characterization of modified PVDF hollow fiber membrane coated with hydrophobic surface modifying macromolecules for desalination application. Journal of Environmental Chemical Engineering, 9(4), 105582.
https://doi.org/10.1016/J.JECE.2021.105582
Ngo, M. T. T., Nguyen, H. N. M., Nguyen, N. C., Nguyen, P. T., & Bui, X. T. (2023). Applications and challenges of membrane distillation in water reuse. Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management, 315–329.
https://doi.org/10.1016/B978-0-443-19180-0.00014-6
Nthunya, L. N., Chong, K. C., Lai, S. O., Lau, W. J., López-Maldonado, E. A., Camacho, L. M., Shirazi, M. M. A., Ali, A., Mamba, B. B., Osial, M., Pietrzyk-Thel, P., Pregowska, A., & Mahlangu, O. T. (2024). Progress in membrane distillation processes for dye wastewater treatment: A review. Chemosphere, 360.
https://doi.org/10.1016/j.chemosphere.2024.142347
Ramlow, H., Machado, R. A. F., & Marangoni, C. (2017). Direct contact membrane distillation for textile wastewater treatment: A state of the art review. Water Science and Technology, 76(10), 2565–2579.
https://doi.org/10.2166/wst.2017.449
Rauter, M. T., Schnell, S. K., & Kjelstrup, S. (2021). Cassie–Baxter and Wenzel States and the Effect of Interfaces on Transport Properties across Membranes. The Journal of Physical Chemistry B, 125(46), 12730–12740.
https://doi.org/10.1021/acs.jpcb.1c07931
Ravi, J., Othman, M. H. D., Matsuura, T., Ro’il Bilad, M., El-badawy, T. H., Aziz, F., Ismail, A. F., Rahman, M. A., & Jaafar, J. (2020). Polymeric membranes for desalination using membrane distillation: A review. Desalination, 490, 114530.
https://doi.org/10.1016/J.DESAL.2020.114530
Razaqpur, A. G., Wang, Y., Liao, X., Liao, Y., & Wang, R. (2021). Progress of photothermal membrane distillation for decentralized desalination: A review. Water Research, 201.
https://doi.org/10.1016/j.watres.2021.117299
Rodrigues, M. E., Cucciniello, R., Farinha, A., Vrouwenvelder, J., & Fortunato, L. (2025). Wetting challenges in treatment of raw textile wastewater by membrane distillation: A case study. Case Studies in Chemical and Environmental Engineering, 11, 101197.
https://doi.org/10.1016/J.CSCEE.2025.101197
Santoro, S., Avci, A. H., Politano, A., & Curcio, E. (2022). The advent of thermoplasmonic membrane distillation. Chemical Society Reviews, 51(14), 6087–6125.
https://doi.org/10.1039/d0cs00097c
Tan, Y. Z., Chew, J. W., & Krantz, W. B. (2016). Effect of humic-acid fouling on membrane distillation. Journal of Membrane Science, 504, 263–273.
https://doi.org/10.1016/J.MEMSCI.2015.12.051
Nguyen, H.T., Duong, H. C., Chen, S. S., Le H.Q., Ngo, H. H., Cong, C. D., Nguyen, N. C., Nguyen, U. T.T., & Huynh, D. D. (2025). Enhancing membrane distillation stability: Isoamyl alcohol coagulation as a novel strategy to mitigate membrane swelling at elevated temperatures. Environmental Technology and Innovation, 37(November 2024), 104029.
https://doi.org/10.1016/j.eti.2025.104029
Tijing, L. D., Woo, Y. C., Choi, J. S., Lee, S., Kim, S. H., & Shon, H. K. (2015). Fouling and its control in membrane distillation—A review. Journal of Membrane Science, 475, 215–244.
https://doi.org/10.1016/J.MEMSCI.2014.09.042
Yadav, A., Labhasetwar, P. K., & Shahi, V. K. (2022). Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. Science of the Total Environment, 806.
https://doi.org/10.1016/j.scitotenv.2021.150692
Yadav, M., Upadhyaya, S., & Singh, K. (2024). Preparation and characterization of PVDF Flat sheet membrane for VMD: Effect of different non-solvent additives and solvents in dope solution. Membrane and Water Treatment, 15(4), 163–176.
https://doi.org/10.12989/mwt.2024.15.4.163
Yadav, P., Farnood, R., & Kumar, V. (2022). Superhydrophobic modification of electrospun nanofibrous Si@PVDF membranes for desalination application in vacuum membrane distillation. Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.132092
Yang, G., Zhang, J., Peng, M., Du, E., Wang, Y., Shan, G., Ling, L., Ding, H., Gray, S., & Xie, Z. (2021). A mini review on antiwetting studies in membrane distillation for textile wastewater treatment. Processes, 9(2), 1–16.
https://doi.org/10.3390/pr9020243
Zhang, X., Koirala, R., Pramanik, B., Fan, L., Date, A., & Jegatheesan, V. (2023). Challenges and advancements in membrane distillation crystallization for industrial applications. Environmental Research, 234, 116577. https://doi.org/10.1016/J.ENVRES.2023.116577