Selection and Identification of Fructophilic Lactic Acid Bacteria with some probiotic properties
Abstract
In order to explore new probiotic sources, this study investigated the potential of fructose-loving lactic acid bacteria (FLAB) from bee wax. From 15 isolated bacterial strains, AG1.4 strain was identified as the most promising probiotic strain. AG1.4 was classified under the Lactiplantibacillus group with 100% similarity. This strain demonstrated a high adhesion ability to solvents, reaching 91.65%, and exhibited strong antibacterial activity against E. coli and S. aureus, with inhibition zones measuring 12.67 mm and 14.33 mm, respectively. Additionally, AG1.4 showed resistance to all three antibiotics: ampicillin (10 µg/mL), tetracycline (30 µg/mL), and ofloxacin (10 µg/mL), and it was the only strain capable of simultaneously degrading starch, protein, and cellulose. The ability to utilize fructose and the unique biological properties provided by strain AG1.4 open new avenues for the development of novel functional fermented products, diversifying probiotic sources, ensuring food safety, and enhancing the nutritional value for humans.
Tóm tắt
Nhằm tìm kiếm nguồn probiotic mới, nghiên cứu này đã được thực hiện với mục đích tuyển chọn được chủng vi khuẩn lactic ưa fructose (FLAB) tiềm năng từ sáp ong. Từ 15 chủng vi khuẩn phân lập đã xác định được chủng AG1.4 là chủng vi khuẩn probiotic tiềm năng nhất. AG1.4 được định danh thuộc nhóm Lactiplantibacillus với độ tương đồng 100%. Chủng vi khuẩn này thể hiện khả năng bám dính dung môi cao đạt 91,65%, hoạt tính kháng khuẩn mạnh chống lại vi khuẩn E. coli và S. aureus với đường kính vòng kháng khuẩn đạt lần lượt là 12,67 mm và 14,33 mm. Ngoài ra, AG1.4 còn có khả năng kháng cả ba loại kháng sinh ampicillin (10 µg/mL), tetracyclin (30 µg/mL) và ofloxacin (30 µg/mL), đây cũng là chủng duy nhất có khả năng phân giải đồng thời tinh bột, protein và cellulose. Khả năng sử dụng fructose và các đặc tính sinh học độc đáo được mang lại từ chủng AG1.4 sẽ mở ra hướng phát triển mới về các sản phẩm lên men chức năng mới, đa dạng hóa nguồn probiotic, góp phần đảm bảo an toàn của thực phẩm đồng thời nâng cao giá trị dinh dưỡng cho con người.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abdelmoneim, K. A., Mutamed, M. A., Amin, N. O., Tareq, M. O., Anas, A. A., Nagendra, P. S., & Richard, H. (2021). Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity. Front Microbiol., 12, 664395. https://doi.org/10.3389/fmicb.2021.664395
Abushelaibi, A., Suheir, A., & Khaled, T. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. Lwt - Food Science And Technology, 79, 316-325. https://doi.org/10.1016/j.lwt.2017.01.041
Álvarez-Cisneros, Y. M., & Ponce-alquicira, E. (2018) Antibiotic resistance in lactic acid bacteria: a review. International Journal of Biology, Pharmacy and Allied Sciences. 10(4): 22-28.
https://doi.org/10.5772/intechopen.80624
Andrea, M., Robert, A. R., Glenn, R. G., Dimitris, C., & Afroditi, C. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol, 103(16), 6463–6472. https://doi.org/10.1007/s00253-019-09978-7
Bantayehu, A. T., & Bekalu, K. (2022). Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon, 8(6), e09725. https://doi.org/10.1016/j.heliyon.2022.e09725
Bestawy, E. I. (2005). Biodegradation of palm oil mill effluent (POME) by bacterial.
Cecilia, F., Vania, P., Constanza, M. L., Lorenzo, M., & Annalisa, R. (2021). Incidence of Tetracycline and Erythromycin Resistance in Meat-Associated Bacteria: Impact of Different Livestock Management Strategies. Microorganisms, 9(10), 2111. https://doi.org/10.3390/microorganisms9102111
Chajecka-Wierzchowska, W., & Zadernowska, A. (2019). Lactic acid bacteria including probiotic strains as a reservoir of antibiotic resistance genes. Food Sci Technol Qual, 3(120), 22–35. https://doi.org/10.15193/zntj/2019/120/294
Christian, K. A., Taghi, M., & Helen, O. (2024). Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods, 13(23), 3714. https://doi.org/10.3390/foods13233714
Darby, T. M., & Jones, R. M. (2017). Beneficial Influences of Lactobacillus plantarum on Human Health and Disease. The Microbiota in Gastrointestinal Pathophysiology Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis, 109-117. https://doi.org/10.1016/B978-0-12-804024-9.00010-0
Dominika, J., Susana, C. R., & Celia C. G. S. (2022). Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods, 11(2), 156. https://doi.org/10.3390/foods11020156
Duygu, A., & Hakan, K. (2019). Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35, 156. https://doi.org/10.1007/s11274-019-2730-x
Geetha, K., Venkatesham, E., Hindumathi, A., & Bhadraiah, B. (2014). Isolation, screening & characterization of plant growth promoting bacteria & their efect on Vigna radita (L.) R. Wilczek. Original Research Artide, 6, 799-809.
Ha, T. T., Mai, T. T., Nguyen, T. P., Tran, L. K. N., Bui, T. V., & Cao, N. D. (2008). Isolation of proteolytic, cellulolytic and amylolytc bacteria in wastewater from municipal solidwaste plant in CanTho city. CTU Journal of Innovation and Sustainable Development, 10, 195-205 (in Vietnamese).
Huynh, N. T., Tran, T. T., Nguyen, V. M., & Ha, T. T. (2016). Selection of antibacterial activity of lactic acid bacteria isolated from fermented small melon (Cucumis melo L.). CTU Journal of Innovation and Sustainable Development, 1, 18-24 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2016.017
Keita, N., Makoto, S., & Takao, M. (2016). Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. Microorganisms, 4(3), 34. https://doi.org/10.3390/microorganisms4030034
Kumari, A., Kunzes, A., Monika, & Tek, C. B. (2016). Probiotic attributes of indigenous Lactobacillus spp. Isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. J Food Sci Technol, 53(5), 2463–2475.
https://doi.org/10.1007/s13197-016-2231-y
Leska, A., Nowal, A., Szulc, J., Motyl, I., & Chrebelska, K. H. C. (2022). Antagonistic Activity of Potentially Probiotic Lactic Acid Bacteria against Honeybee (Apis mellifera L.). Pathogens. Pathogens, 11, 1367. https://doi.org/10.3390/pathogens11111367
Lidia, M., Barbara, D. S., Rosangela, M. (2020). Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components. Curr Microbiol, 77(12), 3831–3841.
https://doi.org/10.1007/s00284-020-02243-5
Mariarosaria, M. (2024). Bifidobacteria, Lactobacilli... when, how and why to use them. Global Pediatrics, 8, 100139. https://doi.org/10.1016/j.gpeds.2024.100139
Nguyen, T. H. (1991). Antibiotic Paper Disk Diffusion Method. Medical Microbiology Testing Technique. Medical Publishing House, Hanoi (pages 329-338) (in Vietnamese).
Niu, K., Kothari, D., Cho, S., Sung, G., Song, I., Kim, S., & Kim, S. (2019). Exploring the probiotic and compound feed fermentative applications of Lactobacillus plantarum SK1305 isolated from Korean green chili pickled pepper. Probiotics Antimicrob Proteins, 11(3), 801–812. https://doi.org/10.1007/s12602-018-9447-2
Nofiani, R., Puji, A, Adhitiyawarman, Sarwiyati. (2022). Characteristics of Lactic Acid Bacteria isolated from traditional fermented fish. Biodiversitas, 23(11), 5662-5669. https://doi.org/10.13057/biodiv/d231116
Nunziata, L., Brasca, M., Morandi, S., & Silvetti, T. (2022). Antibiotic resistance in wild and commercial non-enterococcal lactic acid bacteria and bifidobacteria strains of dairy origin: an update. Food Microbiology, 104, 103999. https://doi.org/10.1016/j.fm.2022.103999
Ojha, A. K., Nagendra, P. S., Vijendra, M., Neela, E., & Neetu, K. T. (2023). Prevalence of antibiotic resistance in lactic acid bacteria isolated from traditional fermented Indian food products. Food Science and Biotechnology, 32, 2131–2143.
https://doi.org/10.1007/s10068-023-01305-1
Padmavathi T, Bhargavi, R., Priyanka, P. R., Niranjan, N. R., & Pavitra, P.V. (2018). Screening of potential probiotic lactic acid bacteria a.nd production of.amylase and its partial purification. J Gen Eng Biotechnol, 16(2), 357-362. https://doi.org/10.1016/j.jgeb.2018.03.005
Patil, M. , Jadhav, A., & Patil, U. (2020). Functional characterization and in vitro screening of Fructobacillus fructosus MCC 3996 isolated from Butea monosperma flower for probiotic potential. Letters in Applied Microbiology, 70, 331-339.
https://doi.org/10.1111/lam.13280
Poonam, V., Divya, J., Leya, S. V., Sangeetha, A. B., & Kumar, V. (2024). Efficacy of Probiotics in Reducing Pathogenic Potential of Infectious Agents. Fermentation, 10, 599. https://doi.org/10.3390/fermentation10120599
Rodak, E. (2011). Antibiotic resistance in lactic acid bacteria. Bromatol Chem Toksykol, 2, 204–210.
Roland, J. S., & Johan E. T. van H. V. (2011). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microbial Cell Factories, 10 (Suppl 1):S3, 1-13.
https://doi.org/10.1186/1475-2859-10-S1-S3
Ryckeboer, J., Mergaet, J., Gosemans, J., Deprins, K., & Swings, J. (2003). Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology, 94, 127-137.
https://doi.org/10.1046/j.1365-2672.2003.01800.x
Shariati, A., Maniya, A., Mohammad, A. K., Mostafa, A., Mahsa, G., Abbas, M., Mohsen, H., & Saeed, K. (2022). The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health, 10, 1025633. https://doi.org/10.3389/fpubh.2022.1025633
Sharma, C., Gulati S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., Mishra, S. K., Puniya, A. K., Gill, J. P. S., & Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous Lactobacilli isolated from curd and human milk samples. Biotech, 7(1), 53. https://doi.org/10.1007/s13205-017-0682-0
Tina, V. P., & Aleš, B. (2020). Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms, 8(2), 297. https://doi.org/10.3390/microorganisms8020297
Tridip, K. D., Shrabani, P., Sudipta, C., Keshab, Chandra, M., & Kunta, G. (2022). Current status of probiotic and related health benefits. Applied Food Research, 2(2), 1-17. https://doi.org/10.1016/j.afres.2022.100185
Yang, F., Xia, W. S., Zhang, X. W., Xu, Y. S., & Jiang, Q. X. (2016). A comparison of endogenous and microbial proteolytic activities during fast fermentation of silver carp inoculated with Lactobacillus plantarum. Food Chem, 207, 86-92.
https://doi.org/10.1016/j.foodchem.2016.03.049
Yesica, R., Paula, C. R., Adelfo, E., Martha, G., & Rogelio, V. (2022). Probiotic activity traits in vitro and production of antimicrobial peptides by Lactobacillaceae isolates from pulque using Lactobacillus acidophilus NCFM as control. Braz J Microbiol, 53(2), 921–933. https://doi.org/10.1007/s42770-022-00684-7
Yilmaz, B., Bangar, S. P., Noemi, E., Shweta, S., Igor, T., Jose, M. L., Ebra, M., Rocha, J. M., & Fatih, O. (2022). The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms, 10(4), 826.
https://doi.org/10.3390/microorganisms1004082.