Isolation and determination of the starch-degrading and E. coli-resistant characteristics of Bacillus spp. isolated from bread wastewater
Abstract
Environmental pollution from food production facilities is becoming increasingly common. Therefore, research on Bacillus strains capable of producing amylase enzymes to treat wastewater rich in starch, such as wastewater from bread production, has become an urgent issue. From wastewater sources in Can Tho, 20 Bacillus spp. strains have been isolated with the ability to hydrolyze starch, showing clearing zone diameters ranging from 9 mm to 30 mm for 2 to 8 days. The strain NK16 exhibited the highest starch hydrolysis capability, producing 1.798 mg/mL of reducing sugars after 6 days. The results of the antibacterial capability survey showed that NK16 isolate had the highest antibacterial activity against Escherichia coli, with an inhibition zone diameter of 9.33 mm. Using 16S rRNA gene sequencing combined with several biochemical tests, NK16 was identified as Bacillus sp. and Bacillus velezensis with 99.73% similarity.
Tóm tắt
Ô nhiễm môi trường do các cơ sở sản xuất thực phẩm gây ra đang trở nên ngày càng phổ biến. Do đó, việc nghiên cứu, tìm kiếm các chủng vi khuẩn Bacillus có khả năng sản xuất enzyme amylase để xử lý nước thải ô nhiễm chứa nhiều tinh bột như nước thải từ sản xuất bánh mì đang là vấn đề cấp bách. Từ nguồn nước thải tại Cần Thơ, 20 chủng Bacillus spp. đã được phân lập với khả năng phân giải tinh bột, đường kính vòng phân giải dao động từ 9 mm đến 30 mm trong khoảng thời gian từ 2 đến 8 ngày khảo sát. Chủng vi khuẩn NK16 có khả năng phân giải tinh bột, tạo ra hàm lượng đường khử cao nhất đạt 1,798 mg/mL sau thời gian khảo sát 6 ngày. Chủng vi khuẩn NK16 cũng có khả năng kháng Escherichia coli mạnh nhất với đường kính vòng kháng khuẩn là 9,33 mm. Bằng phương pháp giải trình tự gene 16S rRNA kết hợp một số thử nghiệm sinh hóa đã xác định được rằng chủng vi khuẩn NK16 là thuộc chi Bacillus sp. và có độ tương đồng lên đến 99,73% với Bacillus velenzensis.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Adelskov, J., & Patel, B. K. (2016). A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor. Biotech, 6(1), 96. https://doi.org/10.1007/s13205-016-0408-8
Agunbiade, M., Oladipo, B., Ademakinwa, A. N., Awolusi, O., Adesiyan, I. M., Oyekola, O., & Ojo, A. (2022). Bioflocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Scientific Reports, 12(1), 10945. https://doi.org/10.1038/s41598-022-15193-8
Bhatt, B., Prajapati, V., Patel, K., & Trivedi, U. (2020). Kitchen waste for economical amylase production using Bacillus amyloliquefaciens KCP2. Biocatalysis and Agricultural Biotechnology, 26, 101654. https://doi.org/10.1016/j. bcab.2020.101654
Chen, Q., Ding, Q., Li, W., Deng, J., Lin, Q., & Li, J. (2022). Enhanced treatment of organic matters in starch wastewater through Bacillus subtilis strain with polyethylene glycol-modified polyvinyl alcohol/sodium alginate hydrogel microspheres. Bioresource Technology, 347, 126741. https://doi.org/10.1016/j.biortech.2022.126741
Dang, Q. H., & Tran, T. T. T. (2022). Isolation, screening and identification of effective microbial strains to make bio-organic fertilizer from organic solid waste. The University of Danang-Journal of Science and Technology, 20(5), 56-61 (in Vietnamese).
Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X., & Borriss, R. (2018). Bacillus velezensis FZB42 in 2018: the Gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology, 9, 2491. https://doi.org/10.3389/fmicb.2018.02491
Geetha, K., Venkatesham, E., Hindumathi, A., & Bhadraiah, B. (2014). Isolation, screening and characterization of plant growth promoting bacteria and their effect on Vigna Radita (L.) R. Wilczek. Int J Curr Microbiol Appl Sci, 3(6), 799-899.
Huynh, N. T. T., Nguyen, L. H. D., & Phan, T. T. S. (2019). Isolation and selection of Lactobacillus having probiotic potential from Colocasia esculenta (L.) Schott. CTU Journal of Science, 55(1), 15-23. https://doi.org/10.22144/ctu.jvn.2019.017
Huynh, N. T. T., & Huynh, V. T. (2020). Characteristics of Bacillus spp. from white leg shrimp (Litopenaeus vannamei) in Kien Giang province. CTU journal of science, 56(2), 44-52. https://doi.org/10.22144/ctu.jvn.2020.029 (in Vietnamese).
Huynh, Y. N., & Huynh, N. T. T. (2024). Isolation and selection of starch degrating bacteria from vermicelli production wastewater. TNU Journal of Science and Technology, 229(1), 28-37. https://doi.org/10.34238/tnu-jst.8243 (in Vietnamese).
Kieliszek, M., Piwowarek, K., Anna, M. Kot., & Katarzyna, P. (2020). The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry. Open Life Sci, 15(1), 787 - 796.
https://doi.org/10.1515/biol-2020-0099
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
Li, C., Li, S., Dang, G., Jia, R., Chen, S., Deng, X., & Cai, H. (2023). Screening and charac-terization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property. Frontiers in Microbiology, 14, 1143265. https://doi.org/10.3389/fmicb.2023.1143265
Lopes, G. R., Oliveira, H. M., Jesus, G. F. A., Martins, M. L., Gomes, C. H. A. M., Soligo, T., & Mouriño, J. L. P. (2020). Biological strategy to improve decomposition of organic matter in tilapia pond. Acta Limnologica Brasiliensia, 32(e27). DOI.org/10.1590/S2179-975X8419.
Mai, T., Nguyen, H. H., & Che, M. N. (2019). Isolation and identification of starch-degrading bacteria from organic waste and intestines (Holotrichia parallela) và earthworms (Lubricus terrestris). Can Tho University Journal of Science, 55, 57-64 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2019.044
Moore, L. W., Chilton, W. S., & Canfield, M. L. (1997). Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Applied and Environmental Microbiology, 63(1), 201-207. https://doi.org/10.1128/aem.63.1.201-207.1997
Nguyen, H. H., & Ly, N. T. H. (2012). Isolation of bacteria strains capable of degrading starch. Can Tho University Journal of Science, 21(a), 37-44 (in Vietnamese).
Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. H. (2019). Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1046.
Rani, N., Sangwan, P., Joshi, M., Sagar, A., & Bala, K. (2019). Microbial Wastewater Treatment (Chapter 5 - Microbes: A Key Player in Industrial Wastewater Treatment), Microbes. https://doi.org/10. 1016/C2017-0-03885-5
Tran, T. G., Trinh, H. N., Nguyen, T. H. N., Vo, D. L. A., & Do, T. K. (2022). Isolation and selection of starch-degrading bacteria strains, Can Tho University Journal of Science, 58, 225-231 (in Vietnamese).
Tran, T. T., Nguyen, V. G., Tran, T. H., Chu, D. H., Pham, P. T., & Nguyen, V. G. (2018). Characterization of marine-derived Streptomyces spp against pathogenic bacteria. Vietnam Journal of Science and Technology, 6(10), 13-17 (in Vietnamese).
Vu, T. M.C., Nguyen, T. H., Quang, T. M., & Nguyen, D. T. (2023). Assess the wastewater treatment efficiency of the rice paper craft village with activated sludge supplemented with probiotics. Vietnam Journal of Science and Technology, 65(8), 61-66. https://doi.org/10.31276/ VJST.65(8).61-66 (in Vietnamese).