Nguyen Thi Nhu Ha * and Le Thi Minh Thuy

* Corresponding author (nhuha@ctu.edu.vn)

Abstract

The study aimed to determine the antioxidant and antibacterial activities of onion peel extract and evaluate the cold preservation effect (4±1oC) of onion skin extract on minced fish paste. The results showed that onion peel extract had a total polyphenol content of 467 ± 1,66 mg GAE/g, showing antioxidant activities as demonstrated by in vitro antioxidant assay. For the antibacterial activity of onion skin extract, the MIC value recorded for Edwardsiella ictaluri strain was 500 µg/mL, while the values were 1000 µg/mL for all three strains Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholerae.  The chilled preservation effect of minced fish paste due to the antioxidant and antibacterial properties of onion peel extract was demonstrated. Samples supplemented with onion peel extract at concentrations of 500 and 1000 µg/g showed the inhibition of lipid oxidation compared to both untreated samples (day 8) and those treated with 27 µg/g of extract (day 20). For psychrophilic bacteria load, the samples with 500 and 1000 µg/g were statistically different from the sample without extract supplementation starting from day 4.

Keywords: Antioxidant activity, antibacterial activity, fish paste, onion skin extract, preservative effect

Tóm tắt

Nghiên cứu được thực hiện nhằm xác định hoạt tính chống oxy hóa và kháng khuẩn của cao chiết vỏ hành tây và đánh giá hiệu quả bảo quản lạnh (4±1oC) của cao chiết đối với paste cá. Kết quả cho thấy, cao chiết vỏ hành tây có hàm lượng polyphenol tổng là 467 mg GAE/g, thể hiện hoạt tính chống oxy hóa thông qua khảo sát hoạt tính kháng oxy hóa in vitro. Đối với hoạt tính kháng khuẩn của chiết xuất vỏ hành tây, giá trị MIC được ghi nhận với dòng vi khuẩn Edwardsiella ictaluri là 500 µg/mL, trong khi giá trị này là 1000 µg/mL cho cả ba dòng Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholerae. Hiệu quả bảo quản lạnh paste cá xay nghiền nhờ vào đặc tính chống oxy hóa và kháng khuẩn của cao chiết vỏ hành tây đã được chứng minh. Khi cá được bổ sung cao chiết vỏ hành tây tại nồng độ 500 và 1000 µg/g, sự kìm hãm oxy hóa lipid so với mẫu không bổ sung cao chiết ở ngày 8 và với mẫu có bổ sung cao chiết 27 µg/g tại ngày 20 được thể hiện rõ. Về mật số vi khuẩn ưa lạnh, nghiệm thức bổ sung cao chiết 500 và 1000 µg/g khác biệt đáng kể (p<0,05) so với mẫu đối chứng (không bổ sung cao chiết) từ ngày thứ 4.

Từ khóa: Cao chiết vỏ hành tây, chống oxy hóa, kháng khuẩn, khả năng bảo quản, paste cá

Article Details

References

Akdeniz, B. (2016). Evaluation of different coating materials for encapsulation of phenolic compounds extracted from onion (Allium cepa) skin. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Food Engineering Department of Middle East Technical University.

Aydemir, T., & Becerik, S. (2011). Phenolic content and antioxidant activity of different extracts from Ocimum basilicum, Apium graveolens and Lepidium sativum seeds. Journal of Food Biochemistry, 35(1), 62-79. https://doi.org/10.1111/j.1745-4514.2010.00366.x

Baharfar, R., Azimi, R., & Mohseni, M. (2015). Antioxidant and antibacterial activity of flavonoid-, polyphenol and anthocyanin-rich extracts from Thymus kotschyanus Boiss. & Hohen aerial parts. Journal of Food Science and Technology, 52(10), 6777–6783. https://doi.org/10.1007/s13197-015-1752-0

Benítez, V., Mollá, E., Martín-Cabrejas, M. A., Aguilera, Y., López-Andréu, F. J., Cools, K., Terry L. A., & Esteban, R. M. (2011). Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods for Human Nutrition, 66, 48-57. https://doi.org/10.1007/s11130-011-0212-x

Benito-Román, Ó., Blanco, B., Sanz, M. T., Beltrán, S. (2021). Freeze-dried extract from onion (Allium cepa cv. Horcal) skin wastes: Extraction intensification and flavonoids identification. Food Bioprod Process. 130, 92–105. https://doi.org/10.1016/j.fbp.2021.09.005

Benjakul, S., Visessanguan, W., Phongkanpai, V., & Tanaka, M. (2005). Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince. Food Chemistry, 90(1-2), 231-239. https://doi.org/10.1016/j.foodchem.2004.03.045

Block, E., Naganathan, S., Putman, D., & Zhao, S. H. (1993). Organosulfur chemistry of garlic and onion: Recent results. Pure and Applied Chemistry, 65(4), 625-632. https://doi.org/10.1351/pac199365040625

Bonaccorsi, P., Caristi, C., Gargiulli, C., & Leuzzi, U. (2008). Flavonol glucosides in Allium species: A comparative study by means of HPLC-DADESI-MS-MS. Food Chem., 107, 1668-73. https://doi.org/10.1016/j.foodchem.2007.09.053

Chadorshabi, S., Hallaj-Nezhadi, S., & Ghasempour, Z. (2022). Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chemistry, 386, 132737.
https://doi.org/10.1016/j.foodchem.2022.132737

Chang, H. C., Huang, G. J., Agrawal, D. C., Kuo, C. L., Wu, C. R., & Tsay, H. S. (2007). Antioxidant activities and polyphenol contents of six folk medicinal ferns used as" Gusuibu". Botanical Studies, 48(4), 397-406.

Chang, S. T., Wu, J. H., Wang, S. Y., Kang, P. L., Yang, N. S., & Shyur, L. F. (2001). Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural and Food Chemistry, 49(7), 3420-3424.
https://doi.org/10.1021/jf0100907

Chekki, R. Z., Snoussi, A., Hamrouni, I., & Bouzouita, N. (2014). Chemical composition, antibacterial and antioxidant activities of Tunisian garlic (Allium sativum) essential oil and ethanol extract. Mediterranean Journal of Chemistry, 3(4), 947-956.
https://doi.org/10.13171/mjc.3.4.2014.09.07.11

Das, K., Yasin, M., Mahbub, N. U., Islam, M. S., & Mahbuba, N. (2014). Evaluation of antioxidant and cytotoxic activity of methanolic extract of Mimosa pudica leaves. The Pharma Innovation, 3(4).

Decker, E. A., Warner, K., Richards, M. P., & Shahidi, F. (2005). Measuring antioxidant effectiveness in food. Journal of Agricultural and Food Chemistry, 53(10), 4303-4310. https://doi.org/10.1021/jf058012x.

Dewi, R. T., & Maryani, F. (2015). Antioxidant and α-glucosidase inhibitory compounds of Centella asiatica. Procedia Chemistry, 17, 147-152. https://doi.org/10.1016/j.proche.2015.12.130

Drummond, A. J., & Waigh, R. (2000). The development of microbiological methods for phytochemical screening.

Duan, Y., Jin, D. H., Kim, H. S., Seong, J. H., Lee, Y. G., Kim, D. S., Chung, H.S., & Jang, S. H. (2015). Analysis of total phenol, flavonoid content and antioxidant activity of various extraction solvents extracts from onion (Allium cepa L.) peels. Journal of the Korean Applied Science and Technology, 32(3), 418-426. https://doi.org/10.12925/jkocs.2015.32.3.418

Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Mérillon, J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. https://doi.org/10.1021/jf803011r

Erkan, N., Doğruyol, H., Günlü, A., & Genç, İ. Y. (2015). Use of natural preservatives in seafood: Plant extracts, edible film and coating. Food and Health, 1(1), 33-49. DOI: 10.3153/JFHS15004

FAO. (2018). World onion production. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/

Gawlik-Dziki, U., Kaszuba, K., Piwowarczyk, K., Świeca, M., Dziki, D., & Czyż, J. (2015). Onion skin—Raw material for the production of supplement that enhances the health-beneficial properties of wheat bread. Food Research International, 73, 97-106.
https://doi.org/10.1016/j.foodres.2015.02.008

Gerges, T. M., Selim, A., & Osman, M. (2016). Improvement the shelf life of tilapia fillets stored at chilling condition. Benha Veterinary Medical Journal, 31(2), 45-55.
https://doi.org/10.21608/bvmj.2016.31260

Güner, S., Boz, Z., Yağız, Y., Topalcengiz, Z., Welt, B. A., Sarnoski, P., Simonne, A., Kristinsson H. G., & Marshall, M. R. (2021). Investigation of phenolic compounds and antioxidant activity in red and yellow onions and a synergistic utilization of skin extract in modified atmosphere packaging of salmon (Salmo salar). Packaging Technology and Science, 34(6), 371-382.
https://doi.org/10.1002/pts.2568

Hajiguliyeva, S., Yilmaz Sarialtin, S., Kurtul, E., Eryilmaz, M., Gürpinar, S. S., Yaylaci, B., Çoban, T., & Bahadir Acikara, Ö. (2021). Evaluation of biological activities of onion from Turkey and determination of phytochemical contents. J Res Pharm, 25(5), 554-563.
http://dx.doi.org/10.29228/jrp.46

Hsieh, P. C., Mau, J. L., & Huang, S. H. (2001). Antimicrobial effect of various combinations of plant extracts. Food Microbiology, 18(1), 35-43.
https://doi.org/10.1006/fmic.2000.0376

International IDF Standards. (1991). International Dairy Federation, IDF-Square Vergote 41, Brussels, Belgium, sec.74A:1991.

Jaime, L., Mollá, E., Fernández, A., Martín-Cabrejas, M. A., López-Andréu, F. J., & Esteban, R. M. (2002). Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. Journal of Agricultural and Food Chemistry, 50(1), 122-128.
https://doi.org/10.1021/jf010797t

Jasuja, N. D., Sharma, S. K., Saxena, R., Choudhary, J., Sharma, R., & Joshi, S. C. (2013). Antibacterial, antioxidant and phytochemical investigation of Thuja orientalis leaves. Journal of Medicinal Plants Research, 7(25), 1886-1893. DOI: 10.5897/JMPR12.1323

Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Medica, 76(14), 1479–1491.
https://doi.org/10.1055/s-0030-1250027

Kuete, V. (2017). Medicinal Spices and Vegetables from Africa (Academic Press). Chapter 14 – Allium Cepa pp. 353-361.
https://doi.org/10.1016/B978-0-12-809286-6.00014-5

Le, Q. U., Lay, H. L., & Wu, M. C. (2018). Antioxidant activities and HepG2 cells growth inhibitory capacity of whole plant ethanol extracts (Eclipta alba Hassk and Mesona procumbens Hemsl). Journal of Food Biochemistry, 42(2), e12454.
https://doi.org/10.1111/jfbc.12454

Leitão, M. F. D. F., & Rios, D. D. P. A. (2000). Microbiological and chemical changes in freshwater prawn (Macrobrachium rosembergii) stored under refrigeration. Brazilian Journal of Microbiology, 31, 177-182.
https://doi.org/10.1590/S1517-83822000000300006

McDonald, A. J., & Mascagni, F. (2001). Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience, 105(3), 681-693.
https://doi.org/10.1016/S0306-4522(01)00214-7

Mojani, M. S., Ghasemzadeh, A., Rahmat, A., Loh, S. P., & Ramasamy, R. (2014). Assessment of bioactive compounds, nutritional composition and antioxidant activity of Malaysian young ginger (Zingiber officinale Roscoe). International Food Research Journal, 21(5), 1931.

Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52(15), 4669-4674. https://doi.org/10.1021/jf0400056

Nirmal, N. P. (2011). Inhibition of polyphenoloxidase and melanosis in pacific white shrimp (Litopenaeus vannamei) by phenolic compounds. A thesis submitted in fulfilment of the requirements for the degree of doctor of philosophy in Food Science and Technology Prince of Songkla University.

Nirmal, N. P., & Benjakul, S. (2009). Effect of ferulic acid on inhibition of polyphenoloxidase and quality changes of Pacific white shrimp (Litopenaeus vannamei) during iced storage. Food Chemistry, 116(1), 323-331.
https://doi.org/10.1016/j.foodchem.2009.02.054

Nugraheni, I. P. A., Widyastika, D., Maulida, S., Susilowati, H., & Jonarta, A. L. (2019). Effect of Red Onion (Allium cepa var ascalonicum) Skin Ethanolic Extract on the Motility and the Adhesion Index of Pseudomonas aeruginosa and Macrophage Phagocytosis Index. Majalah Obat Tradisional, 24(1), 40-46.
https://doi.org/10.22146/mot.45532

Okon, O. E., Ajienka, J. A., Ikiensikimama, S. S., & Akaranta, O. E. (2024). Phytochemical characterization of selected agro-waste extracts as kinetic inhibitors in methane hydrates formation. Results in Engineering, 102429. https://doi.org/10.1016/j.rineng.2024.102429

Oonmetta-aree, J., Suzuki, T., Gasaluck, P., & Eumkeb, G. (2006). Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT-Food Science and Technology, 39(10), 1214-1220. https://doi.org/10.1016/j.lwt.2005.06.015

Othman, A., Ismail, A., Hassan, F. A., Yusof, B. N. M., & Khatib, A. (2016). Comparative evaluation of nutritional compositions, antioxidant capacities, and phenolic compounds of red and green sessile joyweed (Alternanthera sessilis). Journal of Functional Foods, 21, 263-271.
https://doi.org/10.1016/j.jff.2015.12.014

Padma, R., Parvathy, N. G., Renjith, V., Kalpana, P. R., & Rahate, P. (2013). Quantitative estimation of tannins, phenols and antioxidant activity of methanolic extract of Imperata cylindrica. Int J Res Pharm Sci, 4(1), 73-7.

Pourreza, N. (2013). Phenolic compounds as potential antioxidant. Jundishapur journal of natural pharmaceutical products, 8(4), 149.
https://doi.org/10.17795/jjnpp-15380

Price, K. R., & Rhodes, M. J. C. (1997). Analysis of the major flavonol glycosides present in four varieties of onion (Allium cepa) and changes in composition resulting from autolysis. Journal of the Science of Food and Agriculture, 74(3), 331-339.
https://doi.org/10.1002/(SICI)1097-0010(199707)74:3<331::AID-JSFA806>3.0.CO;2-C

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.
https://doi.org/10.1006/abio.1999.4019

Pszczola, D. E. (2002). Antimicrobials: setting up additional hurdles to ensure food safety. Food Technology, 56(6), 99-108.

Rezaeizadeh, A., Zuki, A. B. Z., Abdollahi, M., Goh, Y. M., Noordin, M. M., Hamid, M., & Azmi, T. I. (2011). Determination of antioxidant activity in methanolic and chloroformic extracts of Momordica charantia. African Journal of Biotechnology, 10(24), 4932-4940.

Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159.
https://doi.org/10.1016/S1360-1385(97)01018-2

Rose, P., Whiteman, M., Moore, P. K., & Zhu, Y. Z. (2005). Bioactive S-alk (en) yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Natural Product Reports, 22(3), 351-368. https://doi.org/10.1039/B417639C

Safari, R., & Yosefian, M. (2006). Changes in TVN (Total Volatile Nitrogen) and psycrotrophic bacteria in Persian sturgeon Caviar (Acipenser persicus) during processing and cold storage. Journal of Applied Ichthyology, 22.
https://doi.org/10.1111/j.1439-0426.2007.00997.x

Salman, A. S. M., Hussain, A., Sultana, S., Bhattacharjee, D., Jafor Bapary, M. A., Ahmmed, M. K., Islam, J., & Sayeed, A. (2022). Effect of Storage Conditions on the Quality Attributes of Value-added Cutlets Produced from Low-cost Silver Carp (Hypophthalmichthys molitrix). Journal of Aquatic Food Product Technology, 31(5), 430-444.
https://doi.org/10.1080/10498850.2022.2060054

Sarker, S. D., Nahar, L., & Kumarasamy, Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42(4), 321-324. https://doi.org/10.1016/J.YMETH.2007.01.006

Sharma, K., Mahato, N., & Lee, Y. R. (2018). Systematic study on active compounds as antibacterial and antibiofilm agent in aging onions. Journal of Food and Drug Analysis, 26(2), 518-528. https://doi.org/10.1016/j.jfda.2017.06.009

Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008

Singh, B. N., Singh, B. R., Singh, R. L., Prakash, D., Singh, D. P., Sarma, B. K., Upadhyay G., & Singh, H. B. (2009). Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food and Chemical Toxicology, 47(6), 1161-1167. https://doi.org/10.1016/j.fct.2009.02.004

Singh, V., Krishan, P., & Shri, R. (2017). Extraction of antioxidant phytoconstituents from onion waste. Journal of Pharmacognosy and Phytochemistry, 6(1), 502-505.

Sultanbawa, Y. (2011). Plant antimicrobials in food applications: Minireview. Science against microbial pathogens: Communicating current research and technological advances, 2, 1084-99.

Tang, X., & Cronin, D. A. (2007). The effects of brined onion extracts on lipid oxidation and sensory quality in refrigerated cooked turkey breast rolls during storage. Food Chemistry, 100(2), 712-718. https://doi.org/10.1016/j.foodchem.2005.10.042

Tavares, J., Martins, A., Fidalgo, L. G., Lima, V., Amaral, R. A., Pinto, C. A., Silva, A. M., & Saraiva J. A. (2021). Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods, 10, 780. https://doi.org/10.3390/FOODS10040780

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93.
https://doi.org/10.3390/medicines5030093

Wang, K. H., Lin, R. D., Hsu, F. L., Huang, Y. H., Chang, H. C., Huang, C. Y., & Lee, M. H. (2006). Cosmetic applications of selected traditional Chinese herbal medicines. Journal of Ethnopharmacology, 106(3), 353-359.
https://doi.org/10.1016/j.jep.2006.01.010

Yang, S. J., Paudel, P., Shrestha, S., Seong, S. H., Jung, H. A., & Choi, J. S. (2019). In vitro protein tyrosine phosphatase 1B inhibition and antioxidant property of different onion peel cultivars: A comparative study. Food Science & Nutrition, 7(1), 205-215.
https://doi.org/10.1002/fsn3.863X