Evaluation of the effectiveness of bacteriophages controlling bacterial wilt disease on tomato caused by Ralstonia solanacearum Smith
Abstract
Bacterial wilt disease caused by Ralstonia solanacearum causes significant damage in tomato-growing regions worldwide. In this study, twenty bacteriophages were assessed for their multiplication on a mixture of R. solanacearum. Six phages (ΦOM, ΦR0, ΦR1, ΦCT4, ΦRLV, and ΦBT67) were selected to evaluate their lytic activity against R. solanacearum through plaque formation assays in vitro. The results indicated that these six phages exhibited logarithmic titers ranging from 6.61 to 6.73, which were significantly higher compared to the other phages tested. Plaque diameters of six bacteriophages ranged from 5.88 mm to 7.18 mm at 48 hours-post-inoculation, in which three bacteriophages i.e. ΦBT67 ΦR0 and ΦRLV expressed higher plaque diameters. In greenhouse conditions, evaluation of the effectiveness of single bacteriophage ΦBT67 or mixture of three bacteriophages (ΦBT67 ΦR0 and ΦRLV) application at concentrations of 107 PFU/mL and 108 PFU/mL for preventing bacterial wilt disease in tomato plants. Bacteriophages were applied through soil drenching one hour before pathogen inoculation. Results found that the ΦBT67 treatment and the phage mixture at a concentration of 10⁸ PFU/mL significantly reduced both disease incidence and disease scale compared to the control treatment throughout the study period.
Tóm tắt
Bệnh héo xanh do vi khuẩn Ralstonia solanacearum gây thiệt hại nghiêm trọng ở các vùng trồng cà chua trên toàn thế giới.Trong nghiên cứu này, hai mươi dòng thực khuẩn thể (TKT) đã được đánh giá khả năng nhân mật số trên hỗn hợp vi khuẩn R. solanacearum.Sáu dòng TKT (gồm ΦOM, ΦR0, ΦR1, ΦCT4, ΦRLV và ΦBT67)được chọn để đánh giá khả năng phân giải vi khuẩn R. solanacearum qua sự hình thành đốm tan trên đĩa petri. Kết quả ghi nhận, sáu dòng TKT có log mật số từ 6,61 đến 6,73 cao hơn và khác biệt có ý nghĩa thống kê so với các dòng TKT còn lại, đường kính đốm tan của các dòng TKT này dao động từ 5,88 mm đến 7,18 mm tại thời điểm 48 giờ sau khi cấy,trong đó ba dòng TKT ΦBT67, ΦR0 và ΦRLV thể hiện đường kính đốm tan cao hơn.Trong điều kiện nhà lưới, khi đánh giá hiệu quả phòng trừ bệnh héo xanh trên cây cà chua bằng cách xử lý đơn lẻ dòng ΦBT67 hay kết hợp ba dòng (ΦBT67, ΦR0 và ΦRLV) ở mật số 107 PFU/mL hoặc 108 PFU/mL,xử lý tưới vào gốc cây một giờ trước khi lây bệnh nhân tạo. Kết quả nghiên cứu cho thấy, nghiệm thức ΦBT67 và hỗn hợp TKT ở mật số 108 PFU/mL có tỷ lệ bệnh và trung bình cấp bệnh thấp hơn so với nghiệm thức đối chứng tại các thời điểm khảo sát.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abedon, S. T., & Culler, R. R. (2007). Optimizing bacteriophage plaque fecundity. Journal of theoretical biology, 249(3), 582-592. https://doi.org/10.1016/j.jtbi.2007.08.006
Addy, H. S., Askora, A., Kawasaki, T., Fujie, M., & Yamada, T. (2012). Utilization of filamentous phage φRSM3 to control bacterial wilt caused by Ralstonia solanacearum. Plant disease, 96(8), 1204-1209.
https://doi.org/10.1094/PDIS-2-11-1023-RE
Agrios, G. N. (2005). Plant Pathology (5th ed.). Elsevier, 647-649.
Álvarez, B., López, M. M., & Biosca, E. G. (2019). Biocontrol of the major plant pathogen Ralstonia solanacearum in irrigation water and host plants by novel waterborne lytic bacteriophages. Frontiers in Microbiology, 10, 2813. https://doi.org/10.3389/fmicb.2019.02813
Balogh, B., Jones, J. B., Iriarte, F. B., & Momol, M. T. (2010). Phage therapy for plant disease control. Current pharmaceutical biotechnology, 11(1), 48-57. https://doi.org/10.2174/138920110790725302
Balogh, B., Momol, T., Obradovic, A., & Jones, J. (2009). Bacteriophages as agents for the control of plant pathogenic bacteria. Disease Control in Crops: Biological and Environmentally Friendly Approaches, 246-256. https://doi.org/10.1002/9781444312157.ch13
Brown, D. G., & Allen, C. (2004). Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Molecular microbiology, 53(6), 1641-1660. https://doi.org/10.1111/j.13652958.2004.04237.x
Dennehy, J. J., & Abedon, S. T. (2021). Phage infection and lysis. Bacteriophages: biology, technology, therapy, 341-383. https://doi.org/10.1007/978-3-319-41986-2_53
Doan, T. K. T., Lu, C. T., Pham, V. L., & Nguyen, T. T. N. (2022). Efficacy of bacteriophages in controlling bacterial vascular wilt caused by Ralstonia solanacearum Smith on eggplants. CTU Journal of Innovation and Sustainable Development, 14(Special issue: CBA), 81-85. https://doi.org/10.22144/ctu.jen.2022.032.
Drulis-Kawa, Z., Majkowska-Skrobek, G., Maciejewska, B., Delattre, A. S., & Lavigne, R. (2012). Learning from bacteriophages-advantages and limitations of phage and phage-encoded protein applications. Current Protein and Peptide Science, 13(8), 699-722. https://doi.org/10.2174/138920312804871193
Food and agriculture organization of the United Nations. (2022). Crops and livestock products: Tomatoes production quantity in the world. https://www.fao.org/faostat/en/#data/QCL
Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., & Yamada, T. (2011). Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and environmental microbiology, 77(12), 4155-4162. https://doi.org/10.1128/AEM.02847-10
Gallet, R., Kannoly, S., & Wang, I. N. (2011). Effects of bacteriophage traits on plaque formation. BMC microbiology, 11, 1-16. https://doi.org/10.1186/1471-2180-11-181
Genin, S. (2010). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist, 187(4), 920-928. https://doi.org/10.1111/j.14698137.2010.03397.x
Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual review of phytopathology, 29(1), 65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
He, Y., Chen, Y., Zhang, Y., Qin, X., Wei, X., Zheng, D., Lin, W., Li, Q., & Yuan, G. (2021). Genetic diversity of Ralstonia solanacearum species complex strains obtained from Guangxi, China and their pathogenicity on plants in the Cucurbitaceae family and other botanical families. Plant Pathology, 70(6), 1445-1454. https://doi.org/10.1111/ppa.13389
Islam, T., Haque, M. A., Barai, H. R., Istiaq, A., & Kim, J. J. (2024). Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. Plants, 13(8), 1135. https://doi.org/10.3390/plants13081135
Jones, J. B., Jackson, L. E., Balogh, B., Obradovic, A., Iriarte, F. B., & Momol, M. T. (2007). Bacteriophages for plant disease control. Annu. Rev. Phytopathol., 45(1), 245-262. https://doi.org/10.1146/annurev.phyto.45.062806.094411
Khokhani, D., Tran, T. M., Lowe-Power, T. M., & Allen, C. (2018). Plant assays for quantifying Ralstonia solanacearum virulence. Bio-protocol, 8(18), e3028-e3028. https://doi.org/10.21769/BioProtoc.3028
King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of laboratory and clinical medicine, 44(2), 301-307. https://doi.org/10.5555/uri:pii:002221435490222X
Loc-Carrillo, C., & Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1(2), 111-114.
https://doi.org/10.4161/bact.1.2.14590
Maji, S., & Chakrabartty, P. K. (2014). Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. Australian Journal of Crop Science, 8(2), 208-214. https://doi.org/10.3316/informit.198693189132052
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular plant pathology, 13(6), 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
Mohammed, A. F., Oloyede, A. R., & Odeseye, A. O. (2020). Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Archives of Phytopathology and Plant Protection, 53(1-2), 1-16.
https://doi.org/10.1080/03235408.2020.1715756
Nga, N. T. T., Tran, T. N., Holtappels, D., Kim Ngan, N. L., Hao, N. P., Vallino, M., Tien, D. T. K., Khanh Pham, N. H., Lavigne, R., Kamei, K., Wagemans, J., & Jones, J. B. (2021). Phage biocontrol of bacterial leaf blight disease on welsh onion caused by Xanthomonas axonopodis pv. allii. Antibiotics, 10(5), 517. https://doi.org/10.3390/antibiotics10050517
Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and environments, 30(1), 1-11. https://doi.org/10.1264/jsme2.ME14144
Peeters, N., Guidot, A., Vailleau, F., & Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post‐genomic era. Molecular plant pathology, 14(7), 651-662.
https://doi.org/10.1111/mpp.12038
Poussier, S., Prior, P., Luisetti, J., Hayward, C., & Fegan, M. (2000). Partial sequencing of the hrpB and endoglucanase genes confirms and expands the known diversity within the Ralstonia solanacearum species complex. Systematic and applied microbiology, 23(4), 479-486. https://doi.org/10.1016/S0723-2020(00)80021-1
Rivard, C. L., & Louws, F. J. (2008). Grafting to manage soilborne diseases in heirloom tomato production. HortScience, 43(7), 2104-2111. https://doi.org/10.21273/HORTSCI.43.7.2104
Tran, T. B., & Vo, T. B. T., (2019). Chapter: Solanaceae. In Tran, T. B. & Vo, T. B. T, Vegetable textbook (pp.118-131). Can Tho University Publishing House (in Vietnamese).
Wei, C., Liu, J., Maina, A. N., Mwaura, F. B., Yu, J., Yan, C., Zhang, R., & Wei, H. (2017). Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virologica sinica, 32, 476-484. https://doi.org/10.1007/s12250-017-3987-6
Yamada, T. (2012). Bacteriophages of Ralstonia solanacearum: their diversity and utilization as biocontrol agents in agriculture. Bacteriophages, 113-139.
https://doi.org/10.5772/33983
Zheng, X. F., Zhu, Y. J., Liu, B., Zhou, Y., Che, J. M., & Lin, N. Q. (2014). Relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato fields in China. Journal of Phytopathology, 162(9), 607-616.
https://doi.org/10.1111/jph.12234