Nguyễn Thị Thu Hằng *

* Tác giả liên hệ (ntthang@ctu.edu.vn)

Abstract

Aquaculture’s expansion and intensification have made sudden disease outbreaks more common. Meanwhile, the overuse of antibiotics to tackle epidemics has resulted in increased antibiotic resistance, rendering the most potent antibiotics increasingly ineffective. Focusing on research into innovative, sustainable alternatives to disease treatment will unlock a new era in aquatic health. This article aims to synthesize and evaluate a number of novel therapeutic approaches to control infectious diseases in aquaculture. Advanced therapies such as bacteriophage, endolysin, bacteriocin and quorum quenching increasingly demonstrated to have outstanding effectiveness along with high safety. In addition, therapies such as antimicrobial peptides, IgY antibodies, and nanoparticles have also been shown to be effective in treating aquatic diseases.

Keywords: Aquaculture, disease, therapeutic approaches

Tóm tắt

Sự mở rộng về quy mô của nghề nuôi trồng thủy sản đã dẫn đến dịch bệnh phát sinh ngày một phức tạp hơn. Trong khi đó, việc lạm dụng thuốc kháng sinh để giải quyết dịch bệnh đã dẫn đến gia tăng tình trạng kháng thuốc, khiến các loại kháng sinh mạnh nhất ngày càng mất hiệu quả. Việc tập trung nghiên cứu các giải pháp thay thế bền vững, sáng tạo trong điều trị bệnh sẽ mở ra một giai đoạn mới về sức khỏe thủy sản. Bài báo này nhằm mục đích tổng hợp và đánh giá một số liệu pháp điều trị mới, tiên tiến nhằm kiểm soát dịch bệnh truyền nhiễm trong nuôi trồng thủy sản hiện nay. Các liệu pháp tiên tiến như thực khuẩn thể, endolysin, bacteriocin và quorum quenching đang ngày càng chứng minh được hiệu quả vượt trội cùng với tính an toàn cao. Bên cạnh đó, các liệu pháp như peptide kháng khuẩn, kháng thể IgY, hạt nano cũng mang lại những hiệu quả nhất định trong điều trị bệnh cho thủy sản
hiện nay.

Từ khóa: Dịch bệnh, nuôi trồng thủy sản, phương pháp điều trị

Article Details

Tài liệu tham khảo

Ali, Y., Inusa, I., Sanghvi, G., Mandaliya, V., & Bishoyi, A. K. (2023). The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens. Microbial Pathogenesis, 106199. https://doi.org/10.1016/j.micpath.2023.106199

Antony, J. J., Nivedheetha, M., Siva, D., Pradeepha, G., Kokilavani, P., Kalaiselvi, S., Sankarganesh, A., Balasundaram, A., Masilamani, V., & Achiraman, S. (2013). Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids and Surfaces B: Biointerfaces, 109, 20-24. https://doi.org/10.1016/j.colsurfb.2013.03.020

Azzam-Sayuti, M., Ina-Salwany, M. Y., Zamri-Saad, M., Yusof, M. T., Annas, S., Najihah, M. Y., & Amal, M. N. A. (2021). The prevalence, putative virulence genes and antibiotic resistance profiles of Aeromonas spp. isolated from cultured freshwater fishes in peninsular Malaysia. Aquaculture, 540, 736719. https://doi.org/10.1016/j.aquaculture.2021.736719

Bakiyev, S., Smekenov, I., & Bissenbaev, A. K. (2023). Comparative analysis of potential effects of three phage endolysins against antibiotic-resistant bacteria from the genus Aeromonas. International Aquatic Research, 15(3), 249-262.

Baruah, K., Cam, D. T., Dierckens, K., Wille, M., Defoirdt, T., Sorgeloos, P., & Bossier, P. (2009). In vivo effects of single or combined N-acyl homoserine lactone quorum sensing signals on the performance of Macrobrachium rosenbergii larvae. Aquaculture, 288(3-4), 233-238. https://doi.org/10.1016/j.aquaculture.2008.11.034

Camacho-Jimenez, L., Álvarez-Sánchez, A. R., & Mejía-Ruíz, C. H. (2020). Silver nanoparticles (AgNPs) as antimicrobials in marine shrimp farming: A review. Aquaculture reports, 18, 100512. https://doi.org/10.1016/j.aqrep.2020.100512

Doan, C. T. M., Luu, M. H., & Tu, D. T. (2018). Antimicrobial susceptibility of bacterial pathogen causing internal white spot disease in snakehead fish (Channa striata) in Tra Vinh province. CTU Journal of Science, 54, 108-115 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2018.043

Tran, C. K., Huynh, D. T. T., Phan, D. T., Nguyen, L. T., & Pham, H. T. H. (2022). Multi-antibiotic resistant bacteria from Vietnamese climbing perch (Anabas testudineus) on fish farms in Ho Chi Minh City. Ho Chi Minh City Open University Journal Of Science, 17(2), 30-45 (in Vietnamese). https://doi.org/10.46223/HCMCOUJS.tech.vi.17.2.2249.2022

Danis-Wlodarczyk, K. M., Wozniak, D. J., & Abedon, S. T. (2021). Treating bacterial infections with bacteriophage-based enzybiotics: in vitro, in vivo and clinical application. Antibiotics, 10(12), 1497-1500. https://doi.org/10.3390/antibiotics10121497

Das, S., Aswani, R., Midhun, S. J., Radhakrishnan, E. K., & Mathew, J. (2020). Advantage of zinc oxide nanoparticles over silver nanoparticles for the management of Aeromonas veronii infection in Xiphophorus hellerii. Microbial Pathogenesis, 147, 104348. https://doi.org/10.1016/j.micpath.2020.104348

Deshotel, M. B., Dave, U. M., Farmer, B., Kemboi, D., & Nelson, D. C. (2024). Bacteriophage endolysin treatment for systemic infection of Streptococcus iniae in hybrid striped bass. Fish & Shellfish Immunology, 145, 109296. https://doi.org/10.1016/j.fsi.2023.109296

Droubogiannis, S., Pavlidi, L., Skliros, D., Flemetakis, E., & Katharios, P. (2023). Comprehensive characterization of a novel bacteriophage, vB_VhaS_MAG7 against a fish pathogenic strain of Vibrio harveyi and its in vivo efficacy in phage therapy trials. International Journal of Molecular Sciences, 24(9), 8200. https://doi.org/10.3390/ijms24098200

Tu, D. T., Freddy, H., Partrick, S., Margo, B., Annemie, D., & Nguyen, T. A. (2010). Antimicrobial resistance of Edwardsiella ictaluri isolates from natural outbreaks of bacillary necrosis of Pangasianodon hypophthalmus. CTU Journal of Science, 2010(15a), 162-171 (in Vietnamese).

Duran, N., Durán, M., De Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: nanotechnology, biology and medicine, 12(3), 789-799. https://doi.org/10.1016/j.nano.2015.11.016

Easwaran, M., Raja, N., Eveline, D., Monford Paul Abishek, N., Ahn, J., & Shin, H. J. (2022). Future therapeutic approaches to annihilate bacterial fish diseases in aquaculture. In Aquaculture Science and Engineering (pp. 463-495). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0817-0_17

Egido, J. E., Costa, A. R., Aparicio-Maldonado, C., Haas, P. J., & Brouns, S. J. (2022). Mechanisms and clinical importance of bacteriophage resistance. FEMS microbiology reviews, 46(1), 1-16. https://doi.org/10.1093/femsre/fuab048

FAO, (2022). Progress report on the FAO Action Plan on Antimicrobial Resistance (AMR) 2021-2025. https://www.fao.org/documents/card/en/c/cb5545en

Fenaroli, F., Westmoreland, D., Benjaminsen, J., Kolstad, T., Skjeldal, F. M., Meijer, A. H., Michiel, V., Lilia, U., Norbert, R., Bo, N., Jon, H., & Griffiths, G. (2014). Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment. ACS nano, 8(7), 7014-7026. https://doi.org/10.1021/nn5019126

Fenton, M., McAuliffe, O., O’Mahony, J., & Coffey, A. (2010). Recombinant bacteriophage lysins as antibacterials. Bioengineered bugs, 1(1), 9-16. https://doi.org/10.4161/bbug.1.1.9818

Fowler, V. G., Das, A. F., Lipka-Diamond, J., Schuch, R., Pomerantz, R., Jáuregui-Peredo, L., Adam, B., David, E., Gregory, J. M., Mark, E. R., Robert, W., Ralph, C., Marcus, Z., Pamela, S. D., & Cassino, C. (2020). Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. The Journal of clinical investigation, 130(7), 3750-3760. https://doi.org/10.1172/JCI136577

Ghanei-Motlagh, R., Mohammadian, T., Gharibi, D., Khosravi, M., Mahmoudi, E., Zarea, M., Mansour, E. M., & Menanteau-Ledouble, S. (2021). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531, 735874. https://doi.org/10.1016/j.aquaculture.2020.735874

Guo, Y., Ma, Y., Endri, H., Huang, Y., Pan, X., Qiu, S., Yawei, C., Wei, G., Jie, D., Li, W., & Meng, Q. (2023). Protective effect of chicken egg yolk immunoglobulin (IgY) against Spiroplasma eriocheiris infection in Chinese mitten crab. Aquaculture, 572, 739488. https://doi.org/10.1016/j.aquaculture.2023.739488

Nguyen, H. T. T., Truong, N. Q., & Dang, O. T. H. (2023). The study on parasitic and bacterial pathogens in dry and commercial Asian swamp eels (Monopterus albus). CTU Journal of Science, 59(4), 133-144 (in Vietnamese). https://doi.org/10.22144/ctujos.2023.172

Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11(4), 979. https://doi.org/10.3390/ani11040979

Hossain, M. M. M., Tanni, L. N., Rahman, M. A., Farjana, N., Moon, R. S., Tonni, N. Z., Mahbuba, R. M., Shoumik, M., Nimur, R. Bipul, K. S., Suraiya, A. R., Ummay, R., & Saha, P. K. (2024). Bacteriophage and non-pathogenic Vibrio to control diseases in shrimp aquaculture. Comparative Immunology Reports, 6, 200126. https://doi.org/10.1016/j.cirep.2023.200126

Iyapparaj, P., Maruthiah, T., Ramasubburayan, R., Prakash, S., Kumar, C., Immanuel, G., & Palavesam, A. (2013). Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic biosystems, 9, 1-10. https://doi.org/10.1186/2046-9063-9-12

Jayaprakashvel, M., & Subramani, R. (2019). Implications of quorum sensing and quorum quenching in aquaculture health management. Implication of quorum sensing and biofilm formation in medicine, agriculture and food Industry, 299-312. https://doi.org/10.1007/978-981-32-9409-7_18

Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78-84. https://doi.org/10.1016/j.saa.2012.01.006

Jun, S. Y., Jang, I. J., Yoon, S., Jang, K., Yu, K. S., Cho, J. Y., Moon-Woo, S., Gi, M. J., Seong, J. Y., & Kang, S. H. (2017). Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrobial agents and chemotherapy, 61(6), 1110-1128.
https://doi.org/10.1128/AAC.02629-16

Krahulcova, M., Cverenkárová, K., Koreneková, J., Oravcová, A., Koščová, J., & Bírošová, L. (2023). Occurrence of antibiotic-resistant bacteria in fish and seafood from Slovak market. Foods, 12(21), 3912. https://doi.org/10.3390/foods12213912

Lazzaro, B. P., Zasloff, M., & Rolff, J. (2020). Antimicrobial peptides: Application informed by evolution. Science, 368(6490), 5480. https://doi.org/10.1126/science.aau5480

Le, T. S., Nguyen, T. H., Vo, H. P., Doan, V. C., Nguyen, H. L., Tran, M. T., Tran, T. T., Paul, C. S., & Kurtböke, D. İ. (2018). Protective effects of bacteriophages against Aeromonas hydrophila causing motile Aeromonas septicemia (MAS) in striped catfish. Antibiotics, 7(1), 16-26. https://doi.org/10.3390/antibiotics7010016

Li, M., Wang, Y., Hou, B., Chen, Y., Hu, M., Zhao, X., Qing, Z., Lulu, L., Yanbo, L., Yuqing, L., & Cai, Y. (2024). Toxin gene detection and antibiotic resistance of Clostridium perfringens from aquatic sources. International Journal of Food Microbiology, 110642. https://doi.org/10.1016/j.ijfoodmicro.2024.110642

Linden, S. B., Alreja, A. B., & Nelson, D. C. (2021). Application of bacteriophage-derived endolysins to combat streptococcal disease: Current state and perspectives. Current Opinion in Biotechnology, 68, 213-220. https://doi.org/10.1016/j.copbio.2021.01.012

Liu, J., Wu, Q., Xu, H., Pan, Y., Malakar, P. K., Zhao, Y., & Zhang, Z. (2024). Change of antibiotic resistance in Vibrio spp. during shrimp culture in Shanghai. Aquaculture, 580, 740303. https://doi.org/10.1016/j.aquaculture.2023.740303

Loessner, M. J. (2005). Bacteriophage endolysins - current state of research and applications. Current opinion in microbiology, 8(4), 480-487. https://doi.org/10.1016/j.mib.2005.06.002

Lopez-Meza, J. E., Ochoa-Zarzosa, A., Aguilar, J. A., & Loeza-Lara, P. D. (2011). Antimicrobial peptides: diversity and perspectives for their biomedical application. Biomedical Engineering, Trends, Research and TechnoInc, 275-304.

Lopez-Sanmartin, M., Rengel, R., López-López, M., Lebrón, J. A., Molina-Márquez, A., de la Rosa, I., Pilar, L. C., Alberto, C., Javier, V., & León, R. (2023). D-amino acid peptides as antimicrobial agents against vibrio-associated diseases in aquaculture. Aquaculture, 569, 739362. https://doi.org/10.1016/j.aquaculture.2023.739362

Lu, Y., Liu, J., Jin, L., Li, X., Zhen, Y., Xue, H., Qiuye, L., & Xu, Y. (2009). Passive immunization of crayfish (Procambius clarkiaii) with chicken egg yolk immunoglobulin (IgY) against white spot syndrome virus (WSSV). Applied biochemistry and biotechnology, 159, 750-758.
https://doi.org/10.1007/s12010-009-8555-6

Lubis, A. R., Sumon, M. A. A., Dinh‐Hung, N., Dhar, A. K., Delamare‐Deboutteville, J., Kim, D. H., Andrew, P. S., Duangkhaetita, K., Patima, P., Doan, H. V., Nguyen, L. V., & Brown, C. L. (2024). Review of quorum‐quenching probiotics: A promising non‐antibiotic‐based strategy for sustainable aquaculture. Journal of Fish Diseases, e13941. https://doi.org/10.1111/jfd.13941

Matamp, N., & Bhat, S. G. (2019). Phage endolysins as potential antimicrobials against multidrug resistant Vibrio alginolyticus and Vibrio parahaemolyticus: current status of research and challenges ahead. Microorganisms, 7(3), 84-90. https://doi.org/10.3390/microorganisms7030084

Mitchell, M., O’Driscoll, G., & Riley, M. (2023). Bacteriocin-infused shrimp feed prevents acute hepatopancreatic necrosis disease (AHPND). World Aquaculture 2023. The Annual International Conference & Exposition of World Aquaculture Society and Asian Pacific Aquaculture 2023, Annual meeting of Asian Pacific Chapter, WAS, Northern Territory, Australia, p. 191.

Naiel, M. A., Ghazanfar, S., Negm, S. S., Shukry, M., & Abdel-Latif, H. M. (2023). Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture–A mini-review. Annals of Animal Science, 23(3), 691-701. https://doi.org/10.2478/aoas-2022-0090

Nakamura, R., Pedrosa‐Gerasmio, I. R., Alenton, R. R. R., Nozaki, R., Kondo, H., & Hirono, I. (2019). Anti‐PirA‐like toxin immunoglobulin (IgY) in feeds passively immunizes shrimp against acute hepatopancreatic necrosis disease. Journal of fish diseases, 42(8), 1125-1132. https://doi.org/10.1111/jfd.13024

Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020(1), 1-7. https://doi.org/10.1155/2020/4374891

Nelson, D., Loomis, L., & Fischetti, V. A. (2001). Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proceedings of the National Academy of Sciences, 98(7), 4107-4112. https://doi.org/10.1073/pnas.061038398

Nguyet, A. (2023). Develop plan to prevent and control aquatic diseases in 2024. https://tongcucthuysan.gov.vn/vi-vn/nu%C3%B4i-tr%E1%BB%93ng-th%E1%BB%A7y-s%E1%BA%A3n/-ph%C3%B2ng-ch%E1%BB%91ng-d%E1%BB%8Bch-b%E1%BB%87nh/doc-tin/019588/2023-09-06/xay-dung-ke-hoach-phong-chong-dich-benh-thuy-san-nam-2024 (in Vietnamese).

Ninh, T. T., Nong, H. T., Dinh, S. T., & Nguyen, C. X. (2022). Bacteriocins - Classification, Antibacterial Activities and Applications. Vietnam Journal of Agricultural Sciences, 20(10), 1427-1440 (in Vietnamese).

Dang, O. T. H., Nguyen, P. T., Temdoung, S., Supranee, C., Fatimah, Y., Mohamed, S., Kerry, B., Geert, H., Mauro, G., Stefania, B., Jean, S., & Alan, T. (2005). Antibiotic susceptibility testing of aquaculture associated bacteria originating from integrated farming systems in the Mekong River Delta, Viet Nam. CTU Journal of Science, 2005(4), 136-144 (in Vietnamese). https://doi.org/10.1111/jfd.13387

Dang, O. T. H., Tran, X. T. T., Le, D. T. M., Le, N. P., & Hoang, H. A. (2021). Protective efficacy of phage PVN02 against haemorrhagic septicaemia in striped catfish Pangasianodon hypophthalmus via oral administration. Journal of Fish Diseases, 44(8), 1255-1263.

Ochoa-Meza, A. R., Álvarez-Sánchez, A. R., Romo-Quiñonez, C. R., Barraza, A., Magallón-Barajas, F. J., Chávez-Sánchez, A., Juan, C. G. R., Yanis, T. M., Nina, B., Alexey, P., & Mejía-Ruiz, C. H. (2019). Silver nanoparticles enhance survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. Fish & Shellfish Immunology, 84, 1083-1089. https://doi.org/10.1016/j.fsi.2018.10.007

Peng, J., Wang, D., He, P., Wei, P., Zhang, L., Lan, W., Xingzhi, Z., Junliang, G., Yongxian, C., Wei, L., Yusi, Z., Yusen, L., Wenjian, C., Zelong, Z., Linyuan, J., & Zhou, L. (2024). Seasonal dynamics of antibiotic resistance genes and mobile genetic elements in a subtropical coastal ecosystem: implications for environmental health risks. Environmental Research, 119298. https://doi.org/10.1016/j.envres.2024.119298

Pereira, W. A., Mendonça, C. M. N., Urquiza, A. V., Marteinsson, V. Þ., LeBlanc, J. G., Cotter, P. D., Elías, F. V.,Jaime, R., & Oliveira, R. P. (2022). Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms, 10(9), 1705-1712. https://doi.org/10.3390/microorganisms10091705

Priya, P. S., Boopathi, S., Murugan, R., Haridevamuthu, B., Arshad, A., & Arockiaraj, J. (2023). Quorum sensing signals: Aquaculture risk factor. Reviews in Aquaculture, 15(4), 1294-1310. https://doi.org/10.1111/raq.12774

Romo-Quinonez, C. R., Álvarez-Sánchez, A. R., Álvarez-Ruiz, P., Chávez-Sánchez, M. C., Bogdanchikova, N., Pestryakov, A., & Mejia-Ruiz, C. H. (2020). Evaluation of a new Argovit as an antiviral agent included in feed to protect the shrimp Litopenaeus vannamei against White Spot Syndrome Virus infection. PeerJ, 8, e8446. https://doi.org/10.7717/peerj.8446

Schmelcher, M., & Loessner, M. J. (2021). Bacteriophage endolysins - extending their application to tissues and the bloodstream. Current opinion in biotechnology, 68, 51-59. https://doi.org/10.1016/j.copbio.2020.09.012

Shaalan, M. I., El-Mahdy, M. M., Theiner, S., El-Matbouli, M., & Saleh, M. (2017). In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Veterinaria Scandinavica, 59, 1-11. https://doi.org/10.1186/s13028-017-0317-9

Shaheer, P., Sreejith, V. N., Joseph, T. C., Murugadas, V., & Lalitha, K. V. (2021). Quorum quenching Bacillus spp.: an alternative biocontrol agent for Vibrio harveyi infection in aquaculture. Diseases of Aquatic Organisms, 146, 117-128. https://doi.org/10.3354/dao03619

Sun, B. Y., Kou, H. Y., Jian, P. Y., Kong, L. J., Fang, J., Meng, P. K., Kang, W., Cai-Gen, Y., Gang, Y., & Song, X. H. (2023). Protective effects of egg yolk immunoglobulins (IgY) against CyHV-2 infection in gibel carp (Carassius gibelio). Aquaculture, 569, 739371. https://doi.org/10.1016/j.aquaculture.2023.739371

Thanh, T. (2024). Total aquatic product output in 2023 is estimated to reach over 9,312 thousand tons. https://tongcucthuysan.gov.vn/vi-vn/nu%C3%B4i-tr%E1%BB%93ng-th%E1%BB%A7y-s%E1%BA%A3n/doc-tin/020238/2024-01-19/tong-san-luong-thuy-san-nam-2023-uoc-dat-tren-9312-nghin-tan (in Vietnamese).

Tinh, N. T. N., Asanka Gunasekara, R. A. Y. S., Boon, N., Dierckens, K., Sorgeloos, P., & Bossier, P. (2007). N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures. FEMS microbiology ecology, 62(1), 45-53. https://doi.org/10.1111/j.1574-6941.2007.00378.x

Tinh, N. T. N., Yen, V. H. N., Dierckens, K., Sorgeloos, P., & Bossier, P. (2008). An acyl homoserine lactone-degrading microbial community improves the survival of first-feeding turbot larvae (Scophthalmus maximus L.). Aquaculture, 285(1-4), 56-62. https://doi.org/10.1016/j.aquaculture.2008.08.018

Van Cam, D. T., Van Hao, N., Dierckens, K., Defoirdt, T., Boon, N., Sorgeloos, P., & Bossier, P. (2009). Novel approach of using homoserine lactone-degrading and poly-β-hydroxybutyrate-accumulating bacteria to protect Artemia from the pathogenic effects of Vibrio harveyi. Aquaculture, 291(1-2), 23-30. https://doi.org/10.1016/j.aquaculture.2009.03.009

Vinu, D., Govindaraju, K., Vasantharaja, R., Amreen Nisa, S., Kannan, M., & Vijai Anand, K. (2021). Biogenic zinc oxide, copper oxide and selenium nanoparticles: preparation, characterization and their anti-bacterial activity against Vibrio parahaemolyticus. Journal of Nanostructure in Chemistry, 11, 271-286. https://doi.org/10.1007/s40097-020-00365-7

Waycott, B. (2023). Novel alternatives like bacteriocins take the lead as future antibiotics replacements for aquaculture, https://www.globalseafood.org/advocate/novel-alternatives-like-bacteriocins-take-the-lead-as-future-antibiotics-replacements-for-aquaculture/

Wong, K. Y., Megat Mazhar Khair, M. H., Song, A. A. L., Masarudin, M. J., Chong, C. M., In, L. L. A., & Teo, M. Y. M. (2022). Endolysins against Streptococci as an antibiotic alternative. Frontiers in Microbiology, 13, 935145. https://doi.org/10.3389/fmicb.2022.935145

Xia, J., Ge, C., & Yao, H. (2024). Antimicrobial peptides: An alternative to antibiotic for mitigating the risks of Antibiotic resistance in aquaculture. Environmental Research, 251, 118619. https://doi.org/10.1016/j.envres.2024.118619

Tran, X. T. T., Hoang, H. A., & Le, T. D. (2018). Stability and activity of TG25P phage in control of Aeromonas hydrophila in striped catfish pond water. Science and Technology Development Journal, 21(2), 64-70. https://doi.org/10.32508/stdj.v21i2.429

Yaqub, A., Nasir, M., Kamran, M., Majeed, I., & Arif, A. (2023). Immunomodulation, fish health and resistance to Staphylococcus aureus of Nile tilapia (Oreochromis niloticus) fed diet supplemented with zinc oxide nanoparticles and zinc acetate. Biological Trace Element Research, 201(10), 4912-4925. https://doi.org/10.1007/s12011-023-03571-w

Zermeno‐Cervantes, L. A., González‐Acosta, B., Martínez‐Díaz, S. F., & Cardona‐Félix, C. S. (2020). Antibacterial proteins and peptides as potential treatment in aquaculture: current status and perspectives on delivery. Reviews in Aquaculture, 12(2), 1135-1156. https://doi.org/10.1111/raq.12376

Zhang, L., Lin, L., & Qin, Z. (2024b). A review on the application of chicken immunoglobulin Y in aquaculture. Reviews in Aquaculture, 16(1), 536-551. https://doi.org/10.1111/raq.12850

Zhang, M., Yan, X., Wang, C. B., Liu, W. Q., Wang, Y., Jing, H., Bing, W., Kai, Y., Zi-yue, C., Yu-yu, L., & Wang, G. H. (2024a). Molecular characterization, antibacterial and immunoregulatory activities of liver-expressed antimicrobial peptide 2 (LEAP-2) in black rockfish, Sebastes schlegelii. Fish & Shellfish Immunology, 109467. https://doi.org/10.2139/ssrn.4695724