Le Ngoc Quyen * , Nguyen Huu Hoa and Nguyen Thai Nghe

* Corresponding author (lnquyen@nomail.com)

Abstract

This paper proposes the construction of a recommender system to predict users’ preferences based on matrix factorization techniques. Because of the changes of users’ preferences time by time, to achieve more accurate result, exponential smoothing is integrated into the matrix factorization model by utilizing tensor factorization. This usage aims at exploiting and taking  advantage of information about the time and the order of users’ giving feedbacks. The model is tested relied on the datasets in suggestion and evaluation using the root mean squared error. The experimental results demonstrate fairly good performance of the proposed method.
Keywords: Exponential smoothing, matrix factorization, recommender systems, tensor factorization

Tóm tắt

Bài viết này đề xuất một giải pháp dự đoán sở thích của người dùng dựa trên kỹ thuật phân rã ma trận (Matrix Factorization – MF) có tích hợp yếu tố thời gian trong hệ thống gợi ý (Recommender Systems – RS). Do sở thích của người dùng có thể thay đổi theo thời gian, để kết quả gợi ý có độ chính xác cao hơn chúng tôi đề xuất tích hợp phương pháp dự báo san bằng hàm mũ (Exponential Smoothing - ES) vào mô hình Tensor Factorization với mục tiêu khai thác và tận dụng được các thông tin về thời gian cũng như trình tự (sequence) mà người dùng đã đưa ra phản hồi. Thực nghiệm ban đầu trên các tập dữ liệu chuẩn trong lĩnh vực gợi ý và đánh giá bằng độ đo RMSE (Root Mean Squared Error) đã cho thấy hướng tiếp cận này cho kết quả rất khả quan.
Từ khóa: Hệ thống gợi ý, làm trơn hàm mũ, phân rã ma trận, phân rã nhân tử

Article Details

References

CSL_BIBLIOGRAPHY }Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A., 2011. Context-Aware Recommender Systems. AI Mag. 32, 67–80. doi:10.1609/aimag.v32i3.2364

Bell, R.M., Koren, Y., 2007. Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights, in: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, ICDM ’07. IEEE Computer Society, Washington, DC, USA, pp. 43–52. doi:10.1109/ICDM.2007.90

Bengio, Y., 1996. Markovian Models for Sequential Data, in: Neural Computing Surveys, Vol. 2, Pp. 129- 162, 1999.

Bennett, J., Elkan, C., Liu, B., Smyth, P., Tikk, D., 2007. KDD Cup and Workshop 2007. SIGKDD Explor Newsl 9, 51–52. doi:10.1145/1345448.1345459

Böttcher, A., Wenzel, D., 2008. The Frobenius norm and the commutator. Linear Algebra Its Appl. 429, 1864–1885. doi:10.1016/j.laa.2008.05.020

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., 2015. Time Series Analysis: Forecasting and Control. John Wiley & Sons.

Cen, H., Koedinger, K., Junker, B., 2006. Learning Factors Analysis – A General Method for Cognitive Model Evaluation and Improvement, in: Intelligent Tutoring Systems, Lecture Notes in Computer Science. Presented at the International Conference on Intelligent Tutoring Systems, Springer, Berlin, Heidelberg, pp. 164–175. doi:10.1007/11774303_17

Dunlavy, D.M., Kolda, T.G., Acar, E., 2011a. Temporal Link Prediction Using Matrix and Tensor Factorizations. ACM Trans. Knowl. Discov. Data 5, 1–27. doi:10.1145/1921632.1921636

Feng, M., Heffernan, N., Koedinger, K., 2009. Addressing the assessment challenge with an online system that tutors as it assesses. User Model. User-Adapt. Interact. 19, 243–266. doi:10.1007/s11257-009-9063-7

Gantner, Z., Rendle, S., Schmidt-Thieme, L., 2010. Factorization Models for Context-/Time-aware Movie Recommendations, in: Proceedings of the Workshop on Context-Aware Movie Recommendation, CAMRa ’10. ACM, New York, NY, USA, pp. 14–19. doi:10.1145/1869652.1869654

Kohavi, R., 1995. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, in: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1137–1143.

Kolda, T., Bader, B., 2009. Tensor Decompositions and Applications. SIAM Rev. 51, 455–500. doi:10.1137/07070111X

Koren, Y., 2010. Factor in the Neighbors: Scalable and Accurate Collaborative Filtering. ACM Trans Knowl Discov Data 4, 1:1–1:24. doi:10.1145/1644873.1644874

Koren, Y., Bell, R., Volinsky, C., 2009. Matrix Factorization Techniques for Recommender Systems. Computer 42, 30–37. doi:10.1109/MC.2009.263

Ostertagová, E., Ostertag, O., 2012. Forecasting using simple exponential smoothing method. Acta Electrotech. Inform. 12. doi:10.2478/v10198-012-0034-2

Rendle, S., Freudenthaler, C., Schmidt-Thieme, L., 2010. Factorizing Personalized Markov Chains for Next-basket Recommendation, in: Proceedings of the 19th International Conference on World Wide Web, WWW ’10. ACM, New York, NY, USA, pp. 811–820. doi:10.1145/1772690.1772773

Ricci, F., Rokach, L., Shapira, B. & Kantor, P.B., eds. (2011)., n.d. Recommender Systems Handbook. Springer.

Sarwar, B., Karypis, G., Konstan, J., Riedl, J., 2001. Item-based Collaborative Filtering Recommendation Algorithms, in: Proceedings of the 10th International Conference on World Wide Web, WWW ’01. ACM, New York, NY, USA, pp. 285–295. doi:10.1145/371920.372071

Su, X., Khoshgoftaar, T.M., 2009. A Survey of Collaborative Filtering Techniques. Adv. Artif. Intell. doi:10.1155/2009/421425

Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L., 2010. Cost-sensitive learning methods for imbalanced data. IEEE, pp. 1–8. doi:10.1109/IJCNN.2010.5596486

Yorucu, V., 2003. The Analysis of Forecasting Performance by Using Time Series Data for Two Mediterranean Islands. Rev. Soc. Econ. Bus. Stud. 2.