Ngo Minh Dung * , Pham Thi Tu Nga , Bui Minh Tam , Tran Thi Thanh Hien and Nguyen Thi Long Chau

* Corresponding author (minhdung2704@gmail.com)

Abstract

The aim of this study is to describe actiwihtvities of some digestive enzymes of snakehead larvae from day 1 to day 35 after hatching, feeding with two different diets. In the first treatment, larvae were fed with live feed including Moina sp. and marine trash fish; in the second treatment, larvae were still fed with live feed, but live feed was gradually replacement by formulated diet from day 17 onwards. Larvae were sampled at 1; 3; 5; 7; 9; 12; 15; 18; 21; 25; 30 and 35 days after hatching (DAH), before feeding in the morning. The result showed that, amylase enzymes activity fluctuated during the research period and reached 3.68±0.17 mU/mg protein in live feed treatment and 5.77±0.14 mU/mg protein in formulated diet treatment at 35 DAH. Proteolytic enzymes were detected at low level as early as hatching and remained constant until 12 DAH. Trypsin activity increased significantly at 21 DAH. The highest pepsin activity was 1.44±0.26 mU/mg protein, recorded at 25 DAH, and the highest trypsin and chymotrypsin activities were 333±19.9 mU/mg protein and 1,773±62.3 mU/mg protein respectively, at 35 DAH. Pepsin and trypsin activities of larvae feeding with live feed were significantly higher than those fed formulated diet. However, the higer α-amylase activity was found in larve fed formulated diet treatment.
Keywords: Channa striata, digestive enzyme, snakehead

Tóm tắt

Nghiên cứu xác định sự biến đổi về hoạt tính enzyme tiêu hóa của ống tiêu hóa ở cá lóc bột được tiến hành từ ngày 1 đến ngày thứ 35 sau khi cá nở với 2 chế độ cho ăn khác nhau. Nghiệm thức 1 sử dụng hoàn toàn thức ăn tươi sống là Moina và cá tạp (TĂTS), nghiệm thức 2 cá tạp được thay thế bằng thức ăn chế biến từ ngày 17 trở đi (TĂCB). Mẫu được thu vào buổi sáng trước khi cho ăn vào các ngày 1; 3; 5; 7; 9; 12; 15; 18; 21; 25; 30 và 35 để phân tích sự biến đổi của enzyme tiêu hóa. Kết quả cho thấy, hoạt tính enzyme amylase biến động trong suốt giai đoạn phát triển của cá, đạt cao nhất 3,68±0,17 mU/mg protein ở nghiệm thức TĂTS và 5,77±0,14 mU/mg protein ở nghiệm thức TĂCB vào ngày thứ 35. Trong khi đó, các enzyme tiêu hóa protein được phát hiện với mức thấp ở giai đoạn mới nở và ổn định cho đến ngày 12. Trypsin  tăng ý nghĩa ở ngày thứ 21. Hàm lượng pepsin, đạt giá trị cao nhất vào ngày 25 ở nghiệm thức TĂTS với mức 1,44±0,26 mU/mg protein. Hoạt tính enzyme trypsin và chymotrypsin đạt mức cao nhất là 333±19,9 mU/mg proteinvà 1.773±62,3 mU/mg protein vào ngày 35 ở nghiệm thức TĂCB. Khi so sánh ảnh hưởng của hai loại thức ăn lên hoạt tính của enzyme thì thấy rằng có sự khác biệt có ý nghĩa thống kê (p<0,05). Đối với cá ăn thức ăn cá tạp hoạt tính enzyme pepsin và trypsin cao, trong khi đó cá ăn thức ăn chế biến có hàm lượng α-amylase cao hơn.
Từ khóa: Cá lóc, Channa striata, enzyme tiêu hóa

Article Details

References

AOAC. 2000. Official methods of analysis. Association of Official Analytical Chemists

Arlington, VA, USA

Bernfeld, P., 1951. Enzymes of starch degradation and synthesis. Advan. Enzymol. 12: 379-428.

Bradford, M.M., 1976. A rapid sensitivemethod for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.

Cahu, C.L., Infante, J.L., 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 130: 477-487.

Chakrabarti, R., Rathore, R.M., 2009. Ontogenic changes in the digestive enzyme patterns and characterization of proteases in Indian major carp Cirrhinus mrigala. Aquaculture Nutrion. 16(6) : 569-581.

Darias, M. J., Ortiz-Delgado, J.B., Sarasquete, C., Martínez-Rodríguez, G., Yúfera, M., 2007. Larval organogenesis of Pagrus pagrus L., 1758 with special attention to the digestive system development. Histol Histopathol. 22: 753-768.

Gisbert, E., Giménez, G., Fernández, I., Kotzamanis, Y., Estévez, A., 2009. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture. 287: 381-387.

Hart, S.D., Bharadwaj, A.S., Brown, P.B., 2010 Soybean lectins and trypsin inhibitors, but not oligosaccharides or the interactions of factors, impact weight gain of rainbow trout (Oncorhynchus mykiss). Aquaculture. 306: 310–314.

Henning, S.J., Rubin, D.C., Shulman, R.J., 1994. Ontogeny of the intestinal mucosa. In Physiology of Gastrointestinal Tract. pp. 571-610. Edited by L.R. Johnson. Raven Press, New York.

Hofer, R., Schiermer, F., 1981. Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia. 48: 342-345.

Hien, T.T.T., Trung, N.H.D., Tâm, B.M., Chau, V.M.Q., Huy, N.H., Lee, C.M., Bengtson, D.A., 2016. Replacement of freshwater small-size fish by formulated feed in snakehead (Channa striata) aquaculture: Experimental and commercial-scale pond trials, with economic analysis. Aquaculture Reports. 4: 42-47.

Kolkovski, S., Tandler, A. and Izquierdo, M.S. 1996. The effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass Dicentrachus labrax larvae. Aquaculture, 148: 313–322.

Lazo, J.P., Holt, G.J., Arnold, C.R., 2000. Ontogeny of pancreatic enzymes in larval red drum Sciaenops ocellatus. Aquaculture Nutrion. 6: 183-192.

Lê Thanh Hùng, 2008. Thức ăn và dinh dưỡng thủy sản. Nhà xuất bản Nông Nghiệp, 299 trang.

Lý Vũ Minh, 2010. Nghiên cứu nâng cao hiệu quả sử dụng bột đậu nành chế biến thức ăn nuôi cá Lóc (Channa striata Bloch, 1793) giống. Luận văn tốt nghiệp cao học ngành Nuôi trồng Thủy sản. Đại học Cần Thơ, Cần Thơ.

Ma, H., Cahu, C., Zambonino, J., Yu, H., Duan, Q., Gall, M.M.L., Mai, K., 2005. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture. 245: 239-248.

Manee, S., Tantikitti, C., Vantanakul, V., Musikarune, P., 2012. Digestive enzyme activities during ontogenetic development and effect of live feed in green catfish larvae (Mystus nemurus Cuv. & Val.). Songklanakarin Journal of Science and Technology. 34(3): 247-254.

Munilla-Moran, R., Stark, J.R., Barbour, A., 1990. The role of exogenous enzymes in digestion in cultured turbot larvae Scophthalmus maximus L. Aquaculture. 88: 337-350.

Nguyễn Thị Linh Đan, Trần Thị Thanh Hiền, Trần Lê Cẩm Tú và Lam Mỹ Lan, 2013. Đánh giá khả năng thay thế bột cá bằng bột đậu nành làm thức ăn cho cá thát lát còm (Chitala chitala Hamilton, 1822). Tạp chí khoa học Trường Đại học Cần Thơ, phần B: Nông nghiệp, Thủy sản và Công nghệ sinh học, 29:109-117.

Noting, M., Ueberchar, B., Rosenthal, H., 1999. Trypsin activity and physiological aspects in larval rearing of European seabass (Dicentrachus labrax) using live prey and compound diets. Journal of Applied Ichthyology. 15: 138-142.

Pahlevanyaly, M., Mojaziamiri, B., Posty, A., Bahmani, M., 2004. Study of histological development in Persian sturgeon (Acipenser persicus) during early ontogeny. Iran Fisheries J. 2: 33-50.

Péres, C.L., Cahu, J.L., Zambonino, M., Infante, M., Gall, L., Quazuguel, P., 1996. Amylase and trypsin responses to intake of dietarycarbohydrate and protein depend on the developmental stage in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry. 15: 237-242.

Babaei, S.S., Kenari, A.A., Nazari, R., Gisbert, E., 2011. Developmental changes of digestive enzymes in Persian sturgeon (Acipenser persicus) during larval ontogeny. Aquaculture. 318(1): 138-144.

Suzer, C., Aktulun, S., Coban, D., Kamac, H.O., Saka, S., Firat, K., Alpbaz, A., 2007. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo). Comp. Biochem. Phiysiol. 148A: 470-477.

Tengjaroenkul, B., Smith, B.J., Smith, S.A., Chatreewongsin, U., 2002. Ontogenic development of the intestinal enzymes of cultured Nile Tilapia, Oreochromis niloticus L. Aquaculture. 211: 241-251.

Trần Thị Thanh Hiền, Ngô Minh Dung, Bùi Minh Tâm. 2011. Phương thức thay thế thức ăn chế biến trong ương cá lóc đen (Channa striata). NXB Nông nghiệp, 381-394.

Tseng, H.C., Grendell, J.H., Rothman, S.S., 1982. Food, deodenal extracts, and enzyme secretion by the pancreas. American Journal of Physiology, 243: 304– 312.

Trần Thị Thanh Hiền, Bùi Minh Tâm, Trần Lê Cẩm Tú, Nguyễn Hoàng Đức Trung, Bùi Vũ Hội, Trịnh Mỹ Yến, 2011. Giai đoạn cho ăn thích hợp của phương thức thay thế cá tạp bằng thức ăn chế biến trong ương cá lóc bông Channa micropeltes. Tạp chí khoa học Trường Đại học Cần Thơ. 22a: 261-268.

Võ Minh Quế Châu, 2010. Nghiên cứu sử dụng cám gạo làm thức ăn cho cá lóc (Channa striata). Luận văn tốt nghiệp cao học ngành Nuôi trồng Thủy sản. Đại học Cần Thơ, Cần Thơ.

Wang, C.F., Xie, S.Q., Zhu, X.M., Wu, L., Yang, Y.X., Liu, H.K., 2006. Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidracolarvae. Aquaculture. 254(1-4): 554–562.

Walford, J., Lam, T.J., 1993. Development of the digestive tract and proteolytic enzyme activity in sea bas (Lates calcarifer) larvae and juveniles. Aquaculture. 109: 187-205.

Wannapa, R., Nontawith, A., Ruangvit, Y., 2012. Digestive enzyme activities during larval development of Striped catfish, Pangansianodon hypophthalmus (Sauvage, 1878). Kasetsart Journal. 46: 217-228.

Worthington, T.M., 1982. Enzymes and Related Biochemicals. Biochemical Products Division, Worthington Diagnostic System, Freehold, NJ, USA.