Ảnh hưởng của Brassinolide xử lý trước thu hoạch đến năng suất và chất lượng trái quýt hồng (Citrus recticulata Blanco)
Abstract
The study determines the appropriate concentration and timing of pre-harvest Brassinolide application to improve the yield and fruit quality of quyt Hong. The experiment was arranged in a completely randomized design with two factors: (A) Brassinolide concentrations ; (B) number of applications. The solution was sprayed evenly over the canopy until both leaves and fruits were completely wet (approximately 6 liters per tree), applied in the late afternoon, while the control treatment received water only. The results showed that pre-harvest Brassinolide application significantly improved several parameters related to yield and fruit quality, including total soluble solids (°Brix), peel color, and the incidence of segment-end drying. Among the treatments, the application of Brassinolide at 1 ppm with two sprays at 113 and 105 days before harvest produced the best results, increasing fruit weight (61.54 ± 0.10 g) and total yield (67.70 ± 0.11 tons/ha), while markedly reducing the rate of segment-end drying. Furthermore, Brassinolide treatment at this concentration helps increase some fruit quality indicators (Brix level of fruit flesh: 13.47%; Percentage of dry fruit at the tip of the segment: 6.49±0.02%; Ratio of dry segments/fruit: 5.74±0.02%; Ratio of dry segment length: 2.88±0.02%), contributing to increasing attractiveness in consumption.
Tóm tắt
Nghiên cứu nhằm tìm ra liều lượng và thời gian phun Brassinolide thích hợp trước thu hoạch góp phần gia tăng năng suất và chất lượng trái quýt hồng. Thí nghiệm được bố trí theo thể thức hoàn toàn ngẫu nhiên, thừa số hai nhân tố: (A) Brassinolide; (B) số lần phun. Kết quả cho thấy việc xử lý Brassinolide trước thu hoạch góp phần cải thiện đáng kể một số chỉ tiêu về năng suất và chất lượng trái, bao gồm độ Brix, màu sắc vỏ trái và tỷ lệ khô đầu múi. Trong đó, Brassinolide ở nồng độ 1 ppm và xử lý ở 113 và 105 ngày trước thu hoạch đạt hiệu quả tối ưu nhất, đã làm tăng khối lượng trái (61,54 g), làm tăng năng suất tổng (67,70 tấn/ha), đồng thời làm giảm đáng kể tỷ lệ khô đầu múi trái. Hơn nữa việc xử lý Brassinolide ở nồng độ này giúp làm gia tăng một số chỉ tiêu về phẩm chất của trái (độ Brix thịt trái: 13,47%, tỷ lệ trái bị khô đầu múi: 6,49%, tỷ lệ múi khô/trái: 5,74%, tỷ lệ chiều dài múi khô: 2,88%).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Ali, B., Hasan, S.A., Hayat, S., Hat, Q., Yadav, S., Fariduddin, Q., & Ahmad, A. (2008). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62(2), 153-159. https://doi.org/10.1016/j.envexpbot.2007.07.014
Arora, N., Bhardwaj, R., Sharma, P., & Arora, H.K. (2008). 28-Homobrassinolide alleviates oxidative stress in salt treated maize (Zea mays L.) plants. Brazilian Journal of Plant Physiology, 20(2), 153-157.
https://doi.org/10.1590/S1677-04202008000200007.
Baghel, M., Nagaraja, A., Srivastav, M., Meena, N. K., Senthil Kumar, M., Kumar, A., & Sharma, R. R. (2019). Pleiotropic influences of brassinosteroids on fruit crops: a review. Plant Growth Regulation, 87(2), 375-388.
Bashline, L., Li, S., & Gu, Y. (2014). The trafficking of the cellulose synthase complex in higher plants. Annals of Botany, 114(6), 1059-1067.
Chen, J., Nolan, T. M., Ye, H., Zhang, M., Tong, H., Xin, P., Chu, J., Chu, C., Li, Z., & Yin, Y. (2017). Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses. The Plant Cell, 29(6), 1425-1439.
https://doi.org/10.1105/tpc.17.00364.
Du, K., Lin, H., Luo, Q., Li, T., Wu, H., Wang, B., Guo, Z., Pan, T., & She, W. (2025). Calcium and boron foliar fertilizer to relieve cracking of “Liuyuezao” pummelos. Foods, 14(4), 595.
https://doi.org/10.3390/foods14040595
Fujii, S., & Saka, H. (2001). Distribution of assimilates to each organ in rice plants exposed to a low temperature at the ripening stage, and the effect of brassinolide on the distribution. Plant Production Science, 4(2), 136–144.
https://doi.org/10.1626/pps.4.136.
Garrido-Auñón, F., Puente-Moreno, J., García-Pastor, M. E., Serrano, M., & Valero, D. (2024). Brassinosteroids: An Innovative Compound Family That Could Affect the Growth, Ripening, Quality, and Postharvest Storage of Fleshy Fruits. Plants, 13(21), 3082.
https://doi.org/10.3390/plants13213082
Habibi, F., Serrano, M., Zacarías, L., Valero, D., & Guillén, F. (2021). Postharvest application of 24-epibrassinolide reduces chilling injury symptoms and enhances bioactive compounds content and antioxidant activity of blood orange fruit. Frontiers in Plant Science, 12, 629733.
https://doi.org/10.3389/fpls.2021.629733
Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.
https://doi.org/10.3390/antiox9080681
He, J. X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q., & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307(5715), 1634-1638.
https://doi.org/10.1126/science.1107580
Hussain, M. A., Fahad, S., Sharif, R., Jan, M. F., Mujtaba, M., Ali, Q., Ahmad, H., Amin, N., Ajayo, B. S., Sun, C., Gu, L., Ahmad, I., Jiang, Z., & Hou, J. (2020). Multifunctional role of brassinosteroid and its analogues in plants. Plant Growth Regulation, 92(2), 141-156.
Hussain, M., Fahad, S., Fahad, S., Sharif, R., Jan, M. F., Mujtaba, M., Ali, Q., Ahmad, A., Ahmad, H., Amin, N., Ajayo, B. S., Sun, C., Gu, L., Ahmad, I., Zhanmei, J., & Hou, J. (2020). Multifunctional role of brassinosteroid and its analogues in plants. Plant Growth Regulation, 92(2),141-156.
https://doi.org/10.1007/S10725-020-00647-8.
Janeczko, A, Gruszka. D, Pociecha. E, Dziurka, M., Filek, M., Jurczyk, B., Kalaji, H. M., Kocurek, M., & Waligórski, P. (2016). Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiology and Biochemistry, 99(1), 126–141.
Kifle, D. R., Bacha, K. B., Hora, R. N., Likasa, L. L.(2024). Evaluation of microbiome and physicochemical profiles of fresh fruits of Musa paradisiaca, Citrus sinensis and Carica papaya at different ripening stages: Implication to quality and safety management. National Library of Medicine, 19(1):e0297574.
https://doi.org/10.1371/journal.pone.0297574
Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest biology and technology, 20(3), 207-220.
Li, Z., & He, Y. (2020). Roles of Brassinosteroids in Plant Reproduction. International journal of molecular sciences, 21(3), 1-16.
https://doi.org/10.3390/ijms21030872.
Mahorkar, K.D., Naglot, U.M., Navsare, R.I., & Chavhan, P.M. (2018). Effect of plant growth regulators on flowering, fruit set and yield of custard apple (Annona squamosa L.). International Journal of Chemical Studies, 6(4), 2381-2384.
Mandava, B., & Wang, Y. (2015). Effect of brassinosteroids on cherry maturation, firmness and fruit quality. In III Balkan Symposium on Fruit Growing 1139 (pp. 451-458).
Manghwar, H., Hussain, A., Ali, Q., & Liu, F. (2022). Brassinosteroids (BRs) Role in Plant Development and Coping with Different Stresses. International Journal of Molecular Sciences, 23(3), 1012.
https://doi.org/10.3390/ijms23031012.
Meena, N. K., Asrey, R., Singh, J., Parajapati, U., Chaudhary, K., & Mani, A. (2018). Effects of brassinosteroids application on quality and storage of fruits. Trends & prospects in post harvest management of horticultural crops. Today & Tomorrow’s Printers and Publishers, Delhi, 65-79.
Meena, N. K., Asrey, R., Singh, J., Prajapati, U., Chaudhary, K., & Mani, A. (2018). Effects of brassinosteroids application on quality and storage of fruits. In book: Trends & Prospects in Post Harvest Management of horticultural crops (pp:65-80). Today & Tomorrow's Printers and Publishers. Molecular Biology, 47(1–2), 9–27.
Muengkaew, R., Whangchai, K., & Chaiprasart, P. (2018). Application of calcium–boron improves fruit quality, cell characteristics, and effective softening enzyme activity after harvest in mango fruit (Mangifera indica L.). Horticulture, Environment, and Biotechnology, 59(4), 537-546.
Nguyen, C. M., Phan, T. B. T., Nguyen, T. T. T. (2005). Chemistry practical textbook. Can Tho University Library: 73 papers.
Nguyen, H. V., & Nguyen, H. V. (2014). Mitigating the dry segment disorder in “Hong” mandarin (Citrus reticulata blanco) in Lai Vung district, Dong Thap province. Summary report of the provincial-level research project, Dong Thap province (in Vietnamese).
Nguyen, M. V., Phan, D. A. T., Lam, H. V. T., Nguyen, P. M. N., & Chau, A. D. T. (2005). Effects of a variety of packaging meterials on orange quality during storage. National workshop on Citrus, Mango and Pineapple (pp. 141 – 148). Can Tho University (in Vietnamese).
Peng, J., Tang, X., & Feng, H. (2004). Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomoci). Scientia horticulturae, 101(4), 407-416.prospects for functional analysis. Plant
Qu, T., Liu, R., Wang, W., An, L., Chen, T., Liu, G., & Zhao, Z. (2011). Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology, 63(2), 111-117.
https://doi.org/10.1016/j.cryobiol.2011.07.003.
Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., & Macek, T. (2014). 24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85, 44-57.
https://doi.org/10.1016/j.steroids.2014.04.00
Saglam-Cag, S. (2014). The effect of epibrassinolide on senescence in wheat leaves. Biotechnology & Biotechnological Equipment, 21(1),63-65. https://doi.org/10.1080/13102818.2007.10817415.
Sairam, R. K., Srivastava, G. C., Agarwal, S., & Meena, R. C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum, 49(1), 85-91. https://doi.org/10.1007/s10535-005-5091-2.
Schrick, K., Debolt, S., & Bulone, V. (2012). Deciphering the molecular functions of sterols in cellulose biosynthesis. Frontiers in Plant Science, 3, 1-6. https://doi.org/10.3389/fpls.2012.00084.
Shao, L., Wei, C. C., Gigax, J., Aitkaliyeva, A., Chen, D., Sencer, B. H., & Garner, F. A. (2014). Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions. Journal of Nuclear Materials, 453(1-3), 176-181.
Siddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40(3), 59.
https://dx.doi.org/10.1007/s11738-018-2639-2
Singh, A. P., & Savaldi-Goldstein, S. (2015). Growth control: brassinosteroid activity gets context. Journal of Experimental Botany, 66(4), 1123-1132. https://doi.org/10.1093/jxb/erv026.
Wang, Q., Yu, F., & Xie, Q. (2020). Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. Plant, Cell Environment, 43(10), 2325-2335.
https://doi.org/10.1111/pce.13846.
Wang, Q., Yu, F., & Xie, Q. (2020). Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. Plant, Cell & Environment, 43(10), 2325-2335.
Wang, Y., Fu, X., He, W., Chen, Q., & Wang, Y. (2019). Effect of spraying brassinolide on fruit quality of Citrus grandis cv. ‘Huangjinmiyou’ and ‘Hongroumiyou’. IOP Conference Series: Earth and Environmental Science, 3yY58, 022029.
Willats, W. G. T., McCartney, L., Mackie, W., & Wu, C. Y., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. The Plant Cell, 20(8), 2130-2145. https://doi.org/10.1105/tpc.107.055087.
Xu, F., Xi, Z. M., Zhang, H., Zhang, C. J., & Zhang, Z. W. (2015). Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison. Plant Physiology and Biochemistry, 94(3), 197-208. https://doi.org/10.1016/j.plaphy.2015.06.005.
Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120(2), 249-259.
https://doi.org/10.1016/j.cell.2004.11.044
Zaharah, S. S., Singh. Z., Symons, G. M., & Reid, J. (2012). Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation, 31(3), 363-372. https://doi.org/10.1007/s00344-011-9245-5.
Zhang, C., Bai, M. Y., & Chong, K. (2014). Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Report, 33(5), 683-696.
https://doi.org/10.1007/s00299-014-1578-7.
Zhu, F., Yun, Z., Ma, Q., Gong, Q., Zeng, Y., Xu, J., Cheng, Y., & Deng, X. (2015). Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biology Technology, 100, 8-15.
https://doi.org/10.1016/j.postharvbio.2014.09.014