Ứng dụng phương pháp GNSS tĩnh và động thời gian thực trong quan trắc chuyển vị bản mặt cầu công trình cầu dây văng
Abstract
The paper analyses the monitoring performance of a cable-stayed bridge using the Global Navigation Satellite System with post-processed static and real-time kinematic methods utilising a Topcon MR2 receiver. Data is collected from a monitoring antenna on a stayed cable bridge for 9 days from 21/7/2022 to 29/7/2022, with 216 static observations, one-hour sessions. Regarding the real-time kinematic method, the study uses 86400 one-second interval observations. The analysis results indicate that the static measurement exhibits significantly more minor fluctuations than the real-time kinematic measurement method, both over one day and when averaged over one-hour intervals. In terms of trend, both methods exhibit the same overall trend. Specifically, the smallest oscillations are observed in the transverse direction of the bridge, followed by the longitudinal direction, with the largest oscillations occurring in the vertical direction.
Tóm tắt
Bài báo được thực hiện nhằm nghiên cứu, phân tích hiệu suất quan trắc công trình cầu dây văng sử dụng hệ định vị vệ tinh toàn cầu với hai phương pháp đo tĩnh xử lý sau và đo động thời gian thực với máy thu Topcon MR2. Trong nghiên cứu, kết quả từ một anten quan trắc trên công trình cầu dây văng trong thời gian 9 ngày từ 21/7/2022 đến 29/7/2022 đã được sử dụng với tổng số lượng 216 trị đo, thời gian đo tĩnh của mỗi ca là một giờ đồng hồ. Với phương pháp đo động thời gian thực, 86400 trị đo, ở tần suất 1 giây đã được sử dụng trong nghiên cứu. Kết quả phân tích cho thấy phương pháp đo tĩnh có biên độ dao động nhỏ hơn nhiều lần so với phương pháp đo động thời gian thực xét trong thời gian một ngày và cả khi lấy trung bình theo thời gian một giờ đồng hồ với phương pháp đo động. Về xu hướng, cả hai đều thể hiện cùng một xu hướng khi cho kết quả dao động theo phương ngang ngang cầu là nhỏ nhất, tiếp theo là phương ngang dọc cầu và cuối cùng là phương đứng.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Bernhard Hofmann, W., Herbert, L., & Wasle, E. (2008). GPS, GLONASS, GALILEO $ more. SpringerWienNewYork.
Bisby, L. A. (2006). An Introduction to Structural Health Monitoring. Samco
Luong, C, M. (2013). Long-term monitoring system for large bridge projects. Proceeding of the 2013 Annual Scientific Conference, 31–33 (in Vietnamese).
Cho, H. M., Park, J. W., Lee, J. S., & Han, S. K. (2024). Assessment of the GNSS-RTK for Application in Precision Forest Operations. Remote Sensing, 16(1), 148-167.
https://doi.org/10.3390/rs16010148
Cina, A., Dabove, P., Manzino, A. M., & Piras, M. (2015). Network Real Time Kinematic (NRTK) Positioning – Description, Architectures and Performances. Satellite Positioning - Methods, Models and Applications, 23–45.
https://doi.org/10.5772/59083
ComNav Technology Ltd. (2020). K803 GNSS Module 30.
https://www.comnavtech.com/uploads/soft/20240530/e17361cc7d0801f76e359053fd704bb5.pdf
Du, Y., Huang, G., Zhang, Q., Gao, Y., & Gao, Y. (2020). Asynchronous RTK method for detecting the stability of the reference station in GNSS deformation monitoring. Sensors, 20(5), 1320-1331. https://doi.org/10.3390/s20051320
El-Mowafy, A. (2012). Precise Real-Time Positioning Using Network RTK. In Jin, S. (Ed.), Global Navigation Satellite Systems: Signal, Theory and Applications (161-187). InTech.
https://doi:10.5772/1134
Heo, Y., Li, B., Lim, S., & Rizos, C. (2009). Development of a network real-time kinematic processing platform. 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation, 3647–3655. Curran Associates, Inc.
Huang, G., Du, S., & Wang, D. (2023). GNSS techniques for real-time monitoring of landslides: a review. Satellite Navigation, 4(1), 5-14.
https://doi.org/10.1186/s43020-023-00095-5
Langley, R. B., Teunissen, P. J. G., & Montenbruck, O. (2015). An introduction to GNSS: GPS, GLONASS, BeiDou, Galileo and Other Global Navigation Satellite Systems (Second Edi). NovAtel.
Lewicka, O., Specht, M., & Specht, C. (2022). Assessment of the Steering Precision of a UAV along the Flight Profiles Using a GNSS RTK Receiver. Remote Sensing, 14(23), 1–16. https://doi.org/10.3390/rs14236127
Lin, W., & Yoda, T. (2017). Cable-stayed bridges. In Weiwei Lin, Teruhiko Yoda (Ed), Bridge Engineering Classifications, Design Loading, and Analysis Methods 175–194. Elsevier.
https://doi.org/10.1016/B978-0-12-804432-2.00010-4
Phan, M. N., Nguyen, A. T., & Tran, T. A. (2018). Innovation of Surveying technology, determining coordinates and altitudes based on the application of CORS station services in Vietnam. National Conference on Surveying and Mapping Science, 1–10 (in Vietnamese).
Ministry of Construction. (2012). Technical of measuring and Processing GPS data in engineering survey (in Vietnamese).
Ministry of Natural Resources and Environment. (2015). Circular No. 68/2015/TT-BTNMT of the Ministry of Natural Resources and Environment: Technical regulations for direct terrain measurement to serve the establishment of topographic maps and geographic database at 1:500 scale, 1:1000, 1:2000, 1:5000 (in Vietnamese).
Ministry of Natural Resources and Environment. (2020). Technical regulations on national satellite positioning station network (in Vietnamese).
Vu, Q. N., Le, N. T., Luong, D. N. (2023). Analysis of bridge displacement using GNSS time-series data. IOP Conference Series: Materials Science and Engineering, 1289(1), 012034.
https://doi.org/10.1088/1757-899x/1289/1/012034
Vu, Q. N., & Le, H. V. (2022). Filtering Outliers in GNSS Time Series Data in Real-Time Bridge Monitoring. In Nguyen-Xuan, T., Nguyen-Viet, T., Bui-Tien, T., Nguyen-Quang, T., De Roeck, G. (eds), Proceedings of the 4th International Conference on Sustainability in Civil Engineering, 657–663. Springer.
https://doi.org/doi.org/10.1007/978-981-99-2345-8
Niu, Y., Li, J., Zhou, S., Liu, G., Xiang, Y., Zhang, H., & Shu, J. (2023). Dynamic displacement estimation and modal analysis of long-span bridges integrating multi-GNSS and acceleration measurements. Journal of Infrastructure Preservation and Resilience, 4(1).
https://doi.org/10.1186/s43065-023-00077-6
Vu, Q. N., Nguyen, H. V., & Tran, T. D. (2023). Combination of GNSS, Accelerometer sensor, and IoT solution in bridge real-time monitoring. Journal of Science and Technology in Civil Engineering, 17(4V), 139–151 (in Vietnamese).
https://doi.org/10.31814/stce.huce2023-17(4v)-12
Le, N. T., Männel, B., Jarema, M., Seemala, G. K., Heki, K., & Schuh, H. (2021). Selection of an optimal algorithm for outlier detection in GNSS time series.
https://doi.org/10.5194/egusphere-egu21-1598.
Tran, T. D, & Luong, D. N. (2024). Study on the positioning efficiency of GNSS RTK for road profile surveys - case study in Vietnam. Journal of Science and Technology in Civil Engineering (JSTCE) - HUCE, 18(2), 86–98.
https://doi.org/10.31814/stce.huce2024-18(2)-07
Trimble. (2003). Trimble ® R7/R8 GPS Receiver User Guide.
https://www.ngs.noaa.gov/corbin/class_description/TrimbleR7-R8_UserGuide.pdf
Unicore Communications. (2022). UM982 GPS/BDS/GLONASS/Galileo/QZSS All-constellation Multi-frequency High Precision Positioning & Heading Module.
https://www.manualslib.com/manual/2585774/Unicorecomm-Um982.html
Wang, S., Wang, S., & Sun, X. (2023). A Multi-Scale Anti-Multipath Algorithm for GNSS-RTK Monitoring Application. Sensors, 23, 1–16.
https://doi.org/doi.org/10.3390/s23208396
Zhang, Q., Jing, H., Wang, N., & Tang, L. (2020). Test method of real-time kinematic and its application in terminal positioning performance test. Journal of Physics: Conference Series, 1607(1).
https://doi.org/10.1088/1742-6596/1607/1/012121