Đỗ Thị Mỹ Phượng * , Lê Chi Mai Nguyễn Xuân Lộc

* Tác giả liên hệ (dtmphuong@ctu.edu.vn)

Abstract

This study compares the surface properties and chemical composition of three materials: chitosan from shrimp shells, biochar from rice husks, and chitosan-biochar composite material, in order to evaluate their physicochemical properties. The analytical methods used include SEM to observe surface structure, EDX to determine chemical composition, BET to measure surface area, and FT-IR to identify functional groups. The results show that the BET surface area of chitosan-biochar (108.0 m²/g) is lower than that of biochar (115.6 m²/g) but higher than that of chitosan (9.86 m²/g). All materials have a porous surface with an average pore radius ranging from 2.26 nm to 2.34 nm. EDX spectra show that chitosan mainly contains C and O, while chitosan-biochar also contains Si and N. FT-IR confirms the presence of C–N and N–H functional groups in chitosan-biochar, while biochar contains additional C=C, C–O–C, and Si–O–Si groups. SEM indicates that chitosan and chitosan-biochar have an amorphous surface, while biochar has a porous structure. The chitosan-biochar material effectively adsorbs Methyl Orange (MO) from solution, with optimal adsorption conditions at pH ~3, 0.2 g material, and 240 minutes.

Keywords: Biochar, chitosan, chitosan–biochar, Metyl Orange, rice husk, shrimp shell

Tóm tắt

Đặc tính bề mặt và thành phần hóa học của ba loại vật liệu được so sánh trong nghiên cứu bao gồm: chitosan từ vỏ tôm, biochar từ vỏ trấu và vật liệu tổng hợp chitosan-biochar nhằm đánh giá các đặc tính lý hóa của chúng. Các phương pháp phân tích bao gồm SEM để quan sát cấu trúc bề mặt, EDX để xác định thành phần hóa học, BET để đo diện tích bề mặt và FT-IR để xác định các nhóm chức hóa học. Kết quả cho thấy diện tích bề mặt BET của chitosan-biochar (108,0 m²/g) thấp hơn biochar (115,6 m²/g) nhưng cao hơn chitosan (9,86 m²/g). Tất cả các vật liệu đều có bề mặt xốp với bán kính lỗ rỗng trung bình từ 2,26 nm đến 2,34 nm. Phổ EDX cho thấy chitosan chủ yếu chứa C và O, trong khi chitosan-biochar còn có Si và N. FT-IR xác nhận sự hiện diện của nhóm chức C–N và N–H ở chitosan-biochar, trong khi biochar có thêm nhóm C=C, C–O–C, Si–O–Si. SEM chỉ ra chitosan và chitosan-biochar có bề mặt vô định hình, trong khi biochar có cấu trúc lỗ xốp. Thí nghiệm hấp phụ Methyl Orange cho thấy chitosan-biochar hiệu quả hơn trong loại bỏ MO ở pH ~3, khối lượng
0,2 g và thời gian 240 phút.

Từ khóa: Biochar, chitosan, chitosan–biochar, Metyl Orange, vỏ tôm, vỏ trấu

Article Details

Tài liệu tham khảo

Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource technology, 214, 836-851.
https://doi.org/10.1016/j.biortech.2016.05.057

Alakhras, F., Ouachtak, H., Alhajri, E., Rehman, R., Al-Mazaideh, G., Anastopoulos, I., & Lima, E. C. (2022). Adsorptive removal of cationic rhodamine B dye from aqueous solutions using chitosan-derived schiff base. Separation Science and Technology, 57(4), 542-554.
https://doi.org/10.1080/01496395.2021.1931326

Baskar, G., Kalavathy, G., Aiswarya, R., & Selvakumari, I. A. (2019). Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In Advances in eco-fuels for a sustainable environment (pp. 187-210). Elsevier.
https://doi.org/10.1016/B978-0-08-102728-8.00007-3

Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press.
https://doi.org/10.1016/B978-0-12-812992-0.00007-8

Burk, G. A., Herath, A., Crisler, G. B., Bridges, D., Patel, S., Pittman Jr, C. U., & Mlsna, T. (2020). Cadmium and copper removal from aqueous solutions using chitosan-coated gasifier biochar. Frontiers in Environmental Science, 8, 541203.
https://doi: 10.3389/fenvs.2020.541203

Dewage, N. B., Fowler, R. E., Pittman, C. U., Mohan, D., & Mlsna, T. (2018). Lead (Pb 2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies. RSC advances, 8(45), 25368-25377.
https://doi.org/10.1039/C8RA04600J

Do, P. T., Ueda, T., Kose, R., Nguyen, L. X., Okayama, T., & Miyanishi, T. (2019). Properties and potential use of biochars from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. Journal of Material Cycles and Waste Management, 21, 98-106.
https://doi.org/10.1007/s10163-018-0768-8

Dotto, G. L., Vieira, M. L., & Pinto, L. A. (2012). Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan. Industrial & engineering chemistry research, 51(19), 6862-6868.
https://doi.org/10.1021/ie2030757

Hafshejani, L. D., Hooshmand, A., Naseri, A. A., Mohammadi, A. S., Abbasi, F., & Bhatnagar, A. (2016). Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 95, 101-111. https://doi.org/10.1016/j.ecoleng.2016.06.035

Huang, A., Bai, W., Yang, S., Wang, Z., Wu, N., Zhang, Y., Ji, N., & Li, D. (2022). Adsorption Characteristics of Chitosan‐Modified Bamboo Biochar in Cd (II) Contaminated Water. Journal of Chemistry, 2022(1), 6303252. https://doi.org/10.1155/2022/6303252

Huang, R., Yang, B., & Liu, Q. (2013). Removal of chromium (VI) ions from aqueous solutions with protonated crosslinked chitosan. Journal of applied polymer science, 129(2), 908-915. https://doi.org/10.1002/app.38685

Islam, M. M., Masum, S. M., Rahman, M. M., Molla, M. A. I., Shaikh, A., & Roy, S. (2011). Preparation of chitosan from shrimp shell and investigation of its properties. International Journal of Basic & Applied Sciences, 11(1), 77-80.

Islam, T., Peng, C., Ali, I., Li, J., Khan, Z. M., Sultan, M., & Naz, I. (2021). Synthesis of rice husk-derived magnetic biochar through liquefaction to adsorb anionic and cationic dyes from aqueous solutions. Arabian Journal for Science and Engineering, 46, 233-246.
https://doi.org/10.1007/s13369-020-04537-z

Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36-46. https://doi.org/10.1016/j.crcon.2021.01.003

Jiang, Y. H., Li, A.Y., Deng, H., Ye, C. H., Wu, Y. Q., Linmu, Y. D., & Hang, H. L. (2019). Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks. Bioresource Technology, 276, 183-189.
https://doi.org/10.1016/j.biortech.2018.12.079

Kandile, N. G., Razek, T. M., Al-Sabagh, A. M., & Khattab, M. M. (2014). Synthesis and evaluation of some amine compounds having surface active properties as H2S scavenger. Egyptian Journal of Petroleum, 23(3), 323-329. https://doi.org/10.1016/j.ejpe.2014.08.008

Kim, K. W., & Thomas, R. (2007). Antioxidative activity of chitosans with varying molecular weights. Food chemistry, 101(1), 308-313.
https://doi.org/10.1016/j.foodchem.2006.01.038

Suneeta, K., Rath, P., Kumar, A. S. H., & Tiwari, T. (2015). Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 3, 77-85. https://doi.org/10.1016/j.eti.2015.01.002

Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072

Liu, D., Zhu, Y., Li, Z., Xiao, M., Jiang, C., Chen, M., & Chen, Y. (2017). Microfibrillar polysaccharide-derived biochars as sodium benzoate adsorbents. ACS omega, 2(6), 2959-2966. https://doi.org/10.1021/acsomega.7b00404

Nguyen, L. X., Phan, T. T. T., Le, M. C., & Do, P. T. M. (2022). Chitosan-modified biochar and unmodified biochar for methyl orange: Adsorption characteristics and mechanism exploration. Toxics, 10(9), 500. https://doi.org/10.3390/toxics10090500

Mohammed, M. H., Williams, P. A., & Tverezovskaya, O. (2013). Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food hydrocolloids, 31(2), 166-171. https://doi.org/10.1016/j.foodhyd.2012.10.021

Mojiri, A., Andasht Kazeroon, R., & Gholami, A. (2019). Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: Optimization by the artificial neural network. Water, 11(3), 551.
https://doi.org/10.3390/w11030551

Munagapati, V. S., Wen, J.-C., Pan, C.-L., Gutha, Y., & Wen, J. -H. (2019). Enhanced adsorption performance of Reactive Red 120 azo dye from aqueous solution using quaternary amine modified orange peel powder. Journal of Molecular Liquids, 285, 375-385. https://doi.org/10.1016/j.molliq.2019.04.081

Nguyen, H. P. (1998). Textbook of adsorption and catalysis on the surface of inorganic capillary materials. In: Science and technology (in Vietnamese).

Nguyen, L. X., Do, P. T., Nguyen, C. H., Kose, R., Okayama, T., Pham, T. N., Nguyen, P. D., & Miyanishi, T. (2018). Properties of Biochars prepared from local biomass in the Mekong Delta, Vietnam. Bioresources, 13(4), 7325-7344.

Olafadehan, O. A., Amoo, K. O., Ajayi, T. O., & Bello, V. E. (2021). Extraction and characterization of chitin and chitosan from Callinectes amnicola and Penaeus notialis shell wastes. Journal of Chemical Engineering and Materials Science, 12(1), 1-30.
https://doi.org/10.5897/JCEMS2020.0353

Do, P., Nguyen, L., & Miyanishi, T. (2019). Efficiency of dye adsorption by biochars produced from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. Desalin. Water Treat, 165, 333-351.
https://doi.org/10.5004/dwt.2019.24496

Do, P. T. M., & Nguyen, L. X. (2022). Rice straw biochar and magnetic rice straw biochar for safranin O adsorption from aqueous solution. Water, 14(2), 186. https://doi.org/10.3390/w14020186

Do, P. T. M., Miyanishi, T., Okayama, T., & Kose, R. (2016). Pore characteristics & adsorption capacities of biochars derived from rice residues as affected by variety and pyrolysis temperature. The American Journal of Innovative Research and Applied Sciences, 2(5), 179-189.

Rattanapan, S., Srikram, J., & Kongsune, P. (2017). Adsorption of methyl orange on coffee grounds activated carbon. Energy Procedia, 138, 949-954.
https://doi.org/10.1016/j.egypro.2017.10.064

Ray, A., Banerjee, A., & Dubey, A. (2020). Characterization of biochars from various agricultural by-products using FTIR spectroscopy, SEM focused with image processing. International Journal of Agriculture, Environment and Biotechnology, 13(4), 423-430. https://doi.org/10.30954/0974-1712.04.2020.6

Song, W., Gao, B., Xu, X., Wang, F., Xue, N., Sun, S., Song, W., & Jia, R. (2016). Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. Journal of Hazardous Materials, 304, 280-290. https://doi.org/10.1016/j.jhazmat.2015.10.073

Tangsir, S., Hafshejani, L. D., Lähde, A., Maljanen, M., Hooshmand, A., Naseri, A. A., Moazed, H., Jokiniemi, J., & Bhatnagar, A. (2016). Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method. Chemical Engineering Journal, 288, 198-206.
https://doi.org/10.1016/j.cej.2015.11.097

Vafakish, B., & Wilson, L. D. (2019). Surface-Modified chitosan: An adsorption study of a “Tweezer-Like” biopolymer with fluorescein. Surfaces, 2(3), 468-484.
https://doi.org/10.3390/surfaces2030035

Vigneshwaran, S., Sirajudheen, P., Nikitha, M., Ramkumar, K., & Meenakshi, S. (2021). Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the removal of organic dyes: Isotherm, kinetics and mechanisms. Journal of Molecular Liquids, 326, 115303.
https://doi.org/10.1016/j.molliq.2021.115303

Wang, J., & Wang, H. (2011). Preparation of soluble p-aminobenzoyl chitosan ester by Schiff's base and antibacterial activity of the derivatives. International Journal of Biological Macromolecules, 48(3), 523-529.
https://doi.org/10.1016/j.ijbiomac.2011.01.016

Wang, Y., Xiao, X., & Chen, B. (2018). Biochar impacts on soil silicon dissolution kinetics and their interaction mechanisms. Scientific Reports, 8(1), 8040.
https://doi.org/10.1038/s41598-018-26396-3

Xiang, J., Lin, Q., Yao, X., & Yin, G. (2021). Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil. Environmental Research, 195, 110650. https://doi.org/10.1016/j.envres.2020.110650

Xie, W., Xu, P., & Liu, Q. (2001). Antioxidant activity of water-soluble chitosan derivatives. Bioorganic & Medicinal Chemistry Letters, 11(13), 1699-1701.
https://doi.org/10.1016/S0960-894X(01)00285-2

Yang, J., Ma, T., Li, X., Tu, J., Dang, Z., & Yang, C. (2018). Removal of heavy metals and metalloids by amino‐modified biochar supporting nanoscale zero‐valent Iron. Journal of environmental quality, 47(5), 1196-1204. https://doi.org/10.2134/jeq2017.08.0320

Yi, Y., Tu, G., Zhao, D., Tsang, P. E., & Fang, Z. (2019). Biomass waste components significantly influence the removal of Cr (VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor. Chemical Engineering Journal, 360, 212-220.
https://doi.org/10.1016/j.cej.2018.11.205

Yu, J., Zhu, Z., Zhang, H., Qiu, Y., & Yin, D. (2018). Mg–Fe layered double hydroxide assembled on biochar derived from rice husk ash: facile synthesis and application in efficient removal of heavy metals. Environmental science and pollution research, 25, 24293-24304.
https://doi.org/10.1007/s11356-018-2500-6

Zhou, Y., Gao, B., Zimmerman, A. R., Fang, J., Sun, Y., & Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical engineering journal, 231, 512-518.
https://doi.org/10.1016/j.cej.2013.07.036