Lâm Quốc Anh , Nguyễn Thái Anh Trần Ngọc Tâm *

* Tác giả liên hệ (tntam@ctu.edu.vn)

Abstract

The paper considers the parametric vector equilibrium problem in the Hausdorff topological vector spaces. By utilizing properties of a scalarizing function constructed based on the Hiriart-Urruty oriented distance function along with appropriate conditions and techniques, sufficient conditions for the lower semicontinuity of the solution maps of the problems under consideration are established. This achieved result is novel and is applicable to vector optimization problems.

Keywords: Vector equilibrium problem, vector optimization problems, oriented distance function, semicontinuity

Tóm tắt

Bài báo xem xét bài toán cân bằng vector phụ thuộc tham số trong không gian vector tô pô Hausdorff. Bằng việc sử dụng các tính chất của hàm vô hướng hoá được xây dựng dựa vào hàm khoảng cách định hướng Hiriart-Urruty cùng với các điều kiện cũng như kỹ thuật thích hợp khác, các điều kiện đủ cho tính nửa liên tục dưới của ánh xạ nghiệm hữu hiệu bài toán đang xét đã được thiết lập. Kết quả đạt được này là mới và được áp dụng cho bài toán tối ưu vector.

Từ khóa: Bài toán cân bằng vector, bài toán tối ưu vector, hàm khoảng cách định hướng, tính nửa liên tục

Article Details

Tài liệu tham khảo

Alleche, B. (2014). On hemicontinuity of bifunctions for solving equilibrium problems. Advances in Nonlinear Analysis, 3(2), 69-80. https://doi.org/10.1515/anona-2013-0030

Ansari, Q. H., Konnov, I. V., & Yao, J. C. (2001). Existence of a solution and variational principles for vector equilibrium problems. Journal of Optimization Theory and Applications, 110(3), 481-492. https://doi.org/10.1023/A:1017581009670

Ansari, Q. H., Köbis, E., & Yao, J. C. (2018). Vector variational inequalities and vector optimization. Cham: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-63049-6

Aubin, J. P., & Ekeland, I. (2006). Applied nonlinear analysis. Courier Corporation.

Aubin, J. P., & Frankowska, H. (2009). Set-valued Analysis. Springer Science & Business Media. https://doi.org/10.1007/978-0-8176-4848-0

Aussel, D., Cotrina, J., & Iusem, A. (2017). An existence result for quasi-equilibrium problems. Journal of Convex Analysis, 24(1), 55-66.

Blum, E., & Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems, Mathematics Student, 63,123-145.

Chen, C. R., Li, S. J., & Teo, K. L. (2009). Solution semicontinuity of parametric generalized vector equilibrium problems. Journal of Global Optimization, 45(2), 309-318. https://doi.org/10.1007/s10898-008-9376-9

Ding, X. P., & Park, J. Y. (2004). Generalized vector equilibrium problems in generalized convex spaces. Journal of Optimization Theory and Applications, 120(2), 327-353. https://doi.org/10.1023/B:JOTA.0000015687.95813.a0

Jahn, J. (Ed.). (2009). Vector Optimization. Berlin: Springer.
https://doi.org/10.1007/978-3-642-17005-8_9

Gong, X. H., & Yao, J. C. (2008). Lower semicontinuity of the set of efficient solutions for generalized systems. Journal of Optimization Theory and Applications, 138(2), 197. https://doi.org/10.1007/s10957-008-9379-1

Hadjisavvas, N., & Schaible, S. (1993). On strong pseudomonotonicity and (semi) strict quasimonotonicity. Journal of Optimization Theory and Applications, 79, 139-155. https://doi.org/10.1007/BF00941891

Han, Y., & Gong, X. (2016). Semicontinuity of solution mappings to parametric generalized vector equilibrium problems. Numerical Functional Analysis and Optimization, 37(11), 1420-1437. https://doi.org/10.1080/01630563.2016.1216446

Hiriart-Urruty, J. B. (1979). Tangent cones, generalized gradients and mathematical programming in Banach spaces. Mathematics of Operations Research, 4(1), 79-97. https://doi.org/10.1287/moor.4.1.79

Hu, S., & Papageorgiou, N. S. (1997). Handbook of Multivalued Analysis: Volume I: Theory. Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-6359-4

Kassay, G., & Rădulescu, V. (2018). Equilibrium problems and Applications. Academic Press.

Li, S. J., Liu, H. M., Zhang, Y. & Fang, Z. M. (2013). Continuity of the solution mappings to parametric generalized strong vector equilibrium problems. Journal of Global Optimization. 55, 597–610.
https://doi.org/10.1007/s10898-012-9985-1

Sach, P. H., & Tuan, L. A. (2013). New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems. Journal of Optimization Theory and Applications, 157, 347-364.
https://doi.org/10.1007/s10957-012-0105-7

Sach, P. H., & Minh, N. B. (2013). Continuity of solution mappings in some parametric non-weak vector Ky Fan inequalities. Journal of Global Optimization, 57, 1401-1418. https://doi.org/10.1007/s10898-012-0015-0

Zaffaroni, A. (2003). Degrees of efficiency and degrees of minimality. SIAM Journal on Control and Optimization, 42(3), 1071-1086. https://doi.org/10.1137/S0363012902411532