Đánh giá hoạt tính xúc tác loại bỏ thuốc nhuộm acid fuchsin của vật liệu lưỡng kim FeZn-ZIFs dựa trên quy trình oxy hóa nâng cao
Abstract
This study was conducted to evaluate the catalytic activity of bimetallic FeZn-ZIFs for removing dye residues in aqueous solution. In which, the crystal structure, characteristic functional group, thermal stability, elemental composition and morphology of FeZn-ZIFs were determined through advanced analytical methods such as powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Besides, the ability to handle acid fuchsin dye based on the catalytic activity of FeZn-ZIFs towards the oxidant potassium peroxydisulfate (PDS) was also evaluated by UV-Vis method. The results showed that the FeZn-ZIFs/PDS catalytic system was capable of removing up to 93.3% of acid fuchsin at room temperature after only 30 min.
Tóm tắt
Nghiên cứu này được thực hiện nhằm đánh giá hoạt tính xúc tác của vật liệu lưỡng kim FeZn-ZIFs đối với việc loại bỏ tồn dư thuốc nhuộm khỏi môi trường nước. Trong đó, cấu trúc tinh thể, nhóm chức đặc trưng, độ bền nhiệt, thành phần nguyên tố và hình thái của FeZn-ZIFs được xác định thông qua các phương pháp phân tích hiện đại gồm nhiễu xạ tia X dạng bột, quang phổ hồng ngoại biến đổi Fourier, nhiệt trọng lượng, phổ tán sắc năng lượng tia X và kính hiển vi điện tử quét. Khả năng loại bỏ thuốc nhuộm acid fuchsin dựa trên hoạt tính xúc tác của FeZn-ZIFs đối với chất oxy hóa potassium peroxydisulfate (PDS) cũng được đánh giá bằng phương pháp UV-Vis. Kết quả cho thấy hệ xúc tác FeZn-ZIFs/PDS có khả năng loại bỏ đến 93,3% acid fuchsin tại nhiệt độ phòng chỉ sau 30 phút.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Abdi, J. (2020). Synthesis of Ag-doped ZIF-8 photocatalyst with excellent performance for dye degradation and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125330. https://doi.org/10.1016/j.colsurfa.2020.125330
Cao, C.-Y., Zhang, T., & Cong, Q. (2017). Adsorption of acid fuchsin onto the chitosan–montmorillonite composite. Marine Georesources & Geotechnology, 35(6), 799-805. https://doi.org/10.1080/1064119X.2016.1240277
Elaouni, A., El Ouardi, M., Zbair, M., BaQais, A., Saadi, M., & Ahsaine, H. A. (2022). ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Advances, 12(49), 31801-31817. https://doi.org/10.1039/D2RA05717D
Hou, K., Pi, Z., Yao, F., Wu, B., He, L., Li, X., Wang, D., Dong, H., & Yang, Q. (2021). A critical review on the mechanisms of persulfate activation by iron-based materials: Clarifying some ambiguity and controversies. Chemical Engineering Journal, 407, 127078. https://doi.org/10.1016/j.cej.2020.127078
Jalalian, N., & Nabavi, S. R. (2020). Electrosprayed chitosan nanoparticles decorated on polyamide6 electrospun nanofibers as membrane for acid fuchsin dye filtration from water. Surfaces and Interfaces, 21, 100779. https://doi.org/10.1016/j.surfin.2020.100779
Khudhair, E. M., Kareem, Y. S., Ammar, S. H., & Mahdi, A. S. (2023). Bimetallic (Fe/Zn-ZIF-8) crystals: Fabrication and adsorptive removal activity. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.058
Kurian, M. (2021). Advanced oxidation processes and nanomaterials-a review. Clean Eng Technol, 2, 100090. https://doi.org/10.1016/j.clet.2021.100090
Li, Y., Dong, H., Xiao, J., Li, L., Hou, Y., Chu, D., Hou, X., Xiang, S., & Dong, Q. (2023). Ascorbic acid-assisted iron silicate composite activated peroxy disulfate for enhanced degradation of aqueous contaminants: Accelerated Fe (III)/Fe (II) cycle and the interaction between iron and silicate. Chemical Engineering Journal, 455, 140773. https://doi.org/10.1016/j.cej.2022.140773
Liu, J., Peng, C., & Shi, X. (2022). Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review. Environmental Pollution, 293, 118565. https://doi.org/10.1016/j.envpol.2021.118565
Manzoor, J., & Sharma, M. (2020). Impact of textile dyes on human health and environment. In Impact of textile dyes on public health and the environment (pp. 162-169): IGI Global.
Mcyotto, F., Wei, Q., Macharia, D. K., Huang, M., Shen, C., & Chow, C. W. (2021). Effect of dye structure on color removal efficiency by coagulation. Chemical Engineering Journal, 405, 126674. https://doi.org/10.1016/j.cej.2020.126674
Mohamed, W. A., Fahmy, A., Helal, A., Ahmed, E. A., Elsayed, B. A., Kamoun, E. A., & Gad, E. A. (2022). Degradation of local Brilliant Blue R dye in presence of polyvinylidene fluoride/MWCNTs/TiO2 as photocatalysts and plasma discharge. Journal of Environmental Chemical Engineering, 10(1), 106854. https://doi.org/10.1016/j.jece.2021.106854
Mphuthi, L. E., Erasmus, E., & Langner, E. H. (2021). Metal exchange of ZIF-8 and ZIF-67 nanoparticles with Fe (II) for enhanced photocatalytic performance. ACS omega, 6(47), 31632-31645. https://doi.org/10.1021/acsomega.1c04142
Rodrigues, A. F., Silva, A. F., Silva, F. L., Santos, K. M., Oliveira, M. P., Nobre, M. M., Catumba, B. D., Sales, M. B., Silva, A. R., Braz, A. K. S., Cavalcante, A. L., Alexandre, J. Y., Junior, P. G., Valerio, R. B., Bizerra, V. C., & Santos, J. C. (2023). A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochemistry, 126, 272-291. https://doi.org/10.1016/j.procbio.2023.01.014
Shang, Y., Xu, X., Gao, B., Wang, S., & Duan, X. (2021). Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical Society Reviews, 50(8), 5281-5322. https://doi.org/10.1039/D0CS01032D
Sisi, A. J., Fathinia, M., Khataee, A., & Orooji, Y. (2020). Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 308, 113018. https://doi.org/10.1016/j.molliq.2020.113018
Thanh, M. T., Thien, T. V., Du, P. D., Hung, N. P., & Khieu, D. Q. (2018). Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. Journal of Porous Materials, 25, 857-869. https://doi.org/10.1007/s10934-017-0498-7
Wang, Z., Jiang, J., Pang, S., Zhou, Y., Guan, C., Gao, Y., Li, j., Yang, Y., Qiu, W., & Jiang, C. (2018). Is sulfate radical really generated from peroxydisulfate activated by iron (II) for environmental decontamination? Environmental Science & Technology, 52(19), 11276-11284. https://doi.org/10.1021/acs.est.8b02266
Wu, Z., Wang, Y., Xiong, Z., Ao, Z., Pu, S., Yao, G., & Lai, B. (2020). Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Applied Catalysis B: Environmental, 277, 119136. https://doi.org/10.1016/j.apcatb.2020.119136
Yang, H., Hu, S., Zhao, H., Luo, X., Liu, Y., Deng, C., Yu, Y., Hu, T., Shan, S., Zhi, Y., Su, H., & Zhi, Y. (2021). High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. Journal of Hazardous Materials, 416, 126046. https://doi.org/10.1016/j.jhazmat.2021.126046
Yu, B., Wang, F., Dong, W., Hou, J., Lu, P., & Gong, J. (2015). Self-template synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under UV irradiation. Materials Letters, 156, 50-53. https://doi.org/10.1016/j.matlet.2015.04.142