Huỳnh Ngọc Trúc Phương , Nguyễn Thanh Triều , Lý Kim Hân , Võ Phát Tài Nguyễn Thị Phi Oanh *

* Tác giả liên hệ (ntpoanh@ctu.edu.vn)

Abstract

Gluconic acid is applied in construction, food technology, pharmaceutical products, etc. Many studies indicated that microorganisms were potential candidates for the production of gluconic acid from glucose. This study aimed at the isolation of indigenous bacteria that can transform glucose to gluconic acid. Twenty-five bacterial strains capable of utilizing glucose were isolated from different fruit peels. Three strains GAB3, GBN6, and GSF5 were able to effectively convert glucose (100g/L) to gluconic acid in a minimal medium with pH ranging from 5 to 8 after 5 days of inoculation. Strain GSF5 producing 29.19 g/L showed the highest gluconic acid synthesis ability in the medium at pH6 and was identified as Staphylococcus sp. GSF5 based on 16S-rRNA gene sequence analysis and alignment.

Keywords: Gluconic acid, glucose, isolation, Staphylococcus sp. GSF5

Tóm tắt

Acid gluconic được ứng dụng trong  xây dựng, công nghệ thực phẩm, dược phẩm, v.v. Một số loài vi sinh vật cũng được chứng minh có khả năng sử dụng glucose để tổng hợp acid gluconic. Nghiên cứu này được thực hiện nhằm phân lập các dòng vi khuẩn bản địa có khả năng chuyển hóa glucose thành acid gluconic. Hai mươi lăm dòng vi khuẩn có khả năng sử dụng glucose đã được phân lập từ các loại vỏ trái cây, trong đó, ba dòng GAB3, GBN6 và GSF5 chuyển hóa glucose (100 g/L) thành acid gluconic hiệu quả nhất trong môi trường khoáng tối thiểu có pH từ 5 đến 8 sau 5 ngày nuôi cấy. Dòng vi khuẩn GSF5 tổng hợp acid gluconic cao nhất, đạt 29,19 g/L khi được nuôi cấy trong môi trường có pH = 6. Kết quả phân tích và so sánh trình tự gen 16S-rRNA cho thấy dòng vi khuẩn GSF5 thuộc chi Staphylococcus và được định danh là Staphylococcus sp. GSF5.

Từ khóa: Acid gluconic, glucose, phân lập, Staphylococcus sp. GSF5

Article Details

Tài liệu tham khảo

Alonso, S., Rendueles, M., & Díaz, M. (2015). Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresource Technology, 196, 314-323. https://doi.org/10.1016/j.biortech.2015.07.092

Anastassiadis, S., Aivasidis, A., & Wandrey, C. (2003). Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans. Applied Microbiology and Biotechnology, 61, 110-117. https://doi.org/10.1007/s00253-002-1180-8

Ảnh, K. H. (2006). Giáo trình vi sinh vật học (phần 1). Nhà xuất bản Đại học Quốc gia Hà Nội.

Blazej, R. G., Kumaresan, P., & Mathes, R. A. (2006). Microfabricated bio-processor for integrate nanoliter-scale Sanger DNA sequencing. Proceedings of the National Academy of Sciences, 103(19), 7240-7245. https://doi.org/10.1073/pnas.0602476103

Buchanan, R. E., & Gibbons, N. E. (1974). Bergey’s of determinative bacteriology. America: United States of America, 529-563.

Cowan, S. T., & Steel, K. J. (1965). Manual for the identification of medical bacteria. Manual for the identification of medical bacteria.

Dai, L., Lian, Z., Zhang, R., Nawaz, A., ul Haq, I., Zhou, X., & Xu, Y. (2022). Multi-strategy in production of high titer gluconic acid by the fermentation of concentrated cellulosic hydrolysate with Gluconobacter oxydans. Industrial Crops and Products, 189, 115748. https://doi.org/10.1016/j.indcrop.2022.115748

Feng, T., Wang, Z., Li, H., Li, Q., Guo, Y., Zhao, J., & Liu, J. (2023). Whole-cell biotransformation for simultaneous synthesis of allitol and D-gluconic acid in recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 135(6), 433-439. https://doi.org/10.1016/j.jbiosc.2023.03.004

Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S-rRNA genes. Applied and Environmental Microbiology, 74(8), 2461-2470. https://doi.org/10.1128/AEM.02272-07

Gaden, E. L., Bonkanga, M., Harlander, S., Hesseltine, C. W., & Steinkraus, K. H. (1992). Applications of Biotechnology to Traditional Fermented Foods. National Academy Press, 208.

García-García, I., Cañete-Rodríguez, A. M., Santos-Dueñas, I. M., Jiménez-Hornero, J. E., Ehrenreich, A., Liebl, W., García-Martínez, T., & Mauricio, J. C. (2017). Biotechnologically relevant features of gluconic acid production by acetic acid bacteria. Acetic Acid Bacteria, 6(1), 7-12. https://doi.org/10.4081/aab.2017.6458

Herrick, H. T., & May, O. E. (1928). The production of gluconic acid by the Penicillium luteum-purpurogenum group: II. Some optimal conditions for acid formation. Journal of Biological Chemistry, 77(1), 185-195. https://doi.org/10.1016/S0021-9258(18)84051-0

Lan, Y., Zuo, L., Zhou, Y., Wei, Y., & Dong, C. (2020). Development of rapid colorimetric assay for detection of gluconic acid using iron (Ⅱ) and indigo carmine. Journal of The Chemical Society of Pakistan, 42(6), 525. https://doi.org/10.52568/000671/JCSP/42.04.2020

Lu, F., Ping, K., Wen, L., Zhao, W., Wang, Z., Chu, J., & Zhuang, Y. (2015). Enhancing gluconic acid production by controlling the morphology of Aspergillus niger in submerged fermentation. Process biochemistry, 50(9), 1342-1348.
https://doi.org/10.1016/j.procbio.2015.04.010

Navarro, D., Mateo, E., Torija, M., & Mas, A. (2013). Acetic acid bacteria in grape must. Acetic Acid Bacteria, 2, 19-23. https://doi.org/10.4081/aab.2013.s1.e4

Nguyen, T. P. O., Helbling, D. E., Bers, K., Fida, T. T., Wattiez, R., Kohler, H. P. E., Springael, D., & De Mot, R. (2014). Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65. 2. Applied microbiology and biotechnology, 98, 8235-8252. https://doi.org/10.1007/s00253-014-5858-5

Pal, P., Kumar, R., & Banerjee, S. (2016). Manufacture of gluconic acid: A review towards process intensification for green production. Chemical Engineering and Processing: Process Intensification, 104, 160-171.
https://doi.org/10.1016/j.cep.2016.03.009

Peters, B., Mientus, M., Kostner, D., Junker, A., Liebl, W., & Ehrenreich, A. (2013). Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Applied Microbiology and Biotechnology, 97, 6397-6412. https://doi.org/10.1007/s00253-013-4824-y

Ramachandran, S., Fontanille, P., Pandey, A., & Larroche, C. (2006). Gluconic acid: properties, applications and microbial production. Food Technology & Biotechnology, 44(2).

Sainz, F., Navarro, D., Mateo, E., Torija, M. J., & Mas, A. (2016). Comparison of D-gluconic acid production in selected strains of acetic acid bacteria. International Journal of Food Microbiology, 222, 40-47. https://doi.org/10.1016/j.ijfoodmicro.2016.01.015

Stephan, M. P., Oliveira, M., Teixeira, K. R. S., Martinez-Drets, G., & Döbereiner, J. (1991). Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiology Letters, 77(1), 67-72.
https://doi.org/10.1111/j.1574-6968.1991.tb04323.x

Voon, W. W. Y., Rukayadi, Y., & Meor Hussin, A. S. (2016). Isolation and identification of biocellulose‐producing bacterial strains from Malaysian acidic fruits. Letters in applied microbiology, 62(5), 428-433. https://doi.org/10.1111/lam.12568

Wang, D., Wang, C., Wei, D., Shi, J., Kim, C. H., Jiang, B., Han, Z., & Hao, J. (2016). Gluconic acid production by gad mutant of Klebsiella pneumoniae. World Journal of Microbiology and Biotechnology, 32, 1-11. https://doi.org/10.1007/s11274-016-2080-x

Władyka, B., & Bonar, E. (2018). Application of staphylococci in the food industry and biotechnology, pp. 281-291. In: Pet-to-man travelling staphylococci. Vincenzo Savini (Ed.). Elsevier Inc. ISBN: 978-0-12-813547-1. https://doi.org/10.1016/B978-0-12-813547-1.00021-2

Yan, Y., Liu, X., Jiang, X., Zhang, W., Wang, Y., Wang, Y., Zhang, Y., Luo, H., Yao, B., & Tu, T. (2022). Surface charge modifications modulate glucose oxidase pH-activity profiles for efficient gluconic acid production. Journal of Cleaner Production, 372, 133817. https://doi.org/10.1016/j.jclepro.2022.133817