Tính toán chiều cao sóng ý nghĩa bằng phương pháp tham số
Abstract
Representative wave and parametric wave approaches are popular methods for computing wave height. However, the representative wave method showed low accuracy for computing significant wave height. In contrast, the parametric wave approach performs well in root-mean-square wave height transformation. Therefore, this paper investigates feasibility of applying a parametric wave model to calculate significant wave height. Six parametric wave models are collected to examine their accuracy for modeling considerable wave height, and these models are modified to improve prediction performance. A large amount of wave data is gathered for examination and calibration. The results show that the existing models predict significant wave height with a root-mean-square relative error of 9,9%-16,6%. After modifying them, the error ranges from 6,4%-9,5%. Among the six models, DT23 performs the best result for significant wave height transformation prediction. These six models are tested with other data to verify the wave height estimation capacity. The verification results indicate a significant decrease in error. Therefore, DT23 with modification is recommended for computing significant wave height transformation.
Tóm tắt
Sóng đại diện và tham số là hai phương pháp phổ biển tính chiều cao sóng biển. Phương pháp sóng đại diện có độ chính xác thấp khi tính chiều cao sóng ý nghĩa. Tuy nhiên, phương pháp tham số cho kết quả tốt khi tính chiều cao sóng căn quân phương. Do đó, nghiên cứu này sẽ kiểm tra tính khả thi của việc sử dụng phương pháp tham số để tính chiều cao sóng ý nghĩa. Số lượng lớn số liệu sóng và sáu công thức của phương pháp tham số được thu thập để kiểm tra khả năng tính chiều cao sóng ý nghĩa và hiệu chỉnh hệ số để nâng cao khả năng tính. Kết quả cho thấy, sai số tính chiều cao sóng từ 9,9% đến 19,6%. Tuy nhiên, sai số chỉ còn từ 6,4% đến 9,5% sau khi hiệu chỉnh hệ số và công thức DT23 cho sai số tốt nhất. Để kiểm tra lại khả năng tính toán, bộ số liệu kiểm tra được sử dụng và kết quả cho thấy sai số đã giảm đáng kể khi hiệu chỉnh hệ số. Do đó, DT23 được đề xuất để tính chiều cao sóng ý nghĩa.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Alsina, J. M., & Baldock, T. E. (2007). Improved representation of breaking wave energy dissipation in parametric wave transformation models. Coastal Engineering, 54(10), 765–769. https://doi.org/10.1016/j.coastaleng.2007.05.005
Baldock, T. E., Holmes, P., Bunker, S., & Van Weert, P. (1998). Cross-shore hydrodynamics within an unsaturated surf zone. Coastal Engineering, 34(3–4), 173–196. https://doi.org/10.1016/S0378-3839(98)00017-9
Baldock, T. E., Holmes, P., Bunker, S., & Weert, P. Van. (1998). Cross-shore hydrodynamics within an unsaturated surf zone. Coastal Engineering, 34, 173–196.
Battjes, J. A., & Janssen, J. P. F. M. (1978). Energy loss and set-up due to breaking of random waves. Proceedings of the Coastal Engineering Conference, 1(16), 569–587. https://doi.org/10.9753/icce.v16.32
Battjes, J. A., & Stive, M. J. F. (1985). Calibration and verification of a dissipation model for random breaking waves. Journal of Geophysical Research: Oceans, 90(C5), 9159–9167. https://doi.org/10.1029/JC090IC05P09159
Dally, W. R., Dean, R. G., & Dalrymple, R. A. (1985). Wave Height Variation Across Beaches of Arbitrary Profile. Journal of Geophysical Research, 90(6), 11917–11927.
Dette, H. ., Peters, K., & Newe, J. (1998). MAST III - SAFE Project: Data Documentation, Large Wave Flume Experiments ‘96/97.
Duong, N. T., Tran, K. Q., Luu, L. X., & Tran, L. H. (2023). Prediction of breaking wave height by using artificial neural network-based approach. Ocean Modelling, 102177. https://doi.org/10.1016/J.OCEMOD.2023.102177
Goda, Y. (1970). A synthesis of breaker indices. Proceedings of the Japan Society of Civil Engineers, 1970(180), 39–49. https://doi.org/10.2208/jscej1969.1970.180_39
Hotta, S., Mizuguohi, M., & Isobe, M. (1982). A Field Study of Waves in the Nearshore Zone. Coastal Engineering Proceedings, 38–57. https://doi.org/https://doi.org/10.9753/icce.v18.3
Janssen, T. T., & Battjes, J. A. (2007). A note on wave energy dissipation over steep beaches. Coastal Engineering, 54(9), 711–716. https://doi.org/10.1016/j.coastaleng.2007.05.006
Katayama, H. (1991). Cross-shore Velocity Distribution due to Breaking of Irregular Waves on a Bar-Type Beach. Bachelor Thesis. Department of Civil Engineering, Yokohama National University, JapanThesis, Department of Civil Engineering, Yokohama National University, Japan. https://doi.org/10.22144/CTU.JVN.2018.131
Kraus, N. C., & Smith, M. J. (1994). SUPERTANK laboratory data collection project. Technical Report CERC-94-3, WES, US Army Corps of Engineers, Vols. 1 and 2.
Le Mehaute, B. (1962). On Non-Saturated Breakers and the Wave Run-Up. Proc. 8th Coastal Engineering Conference, ASCE, 77–92. https://doi.org/10.9753/icce.v8.6
Miche, M. (1944). Mouvements ondulatoires des mers en profondeur constante ou d´ecroissante. Annales Des Ponts et Chaussees, 114, 369–406. https://repository.tudelft.nl/islandora/object/uuid%3A6fceef55-d71b-4e3e-a94f-98ff17cb8f91
Nairn, R. B. (1990). Prediction of cross-shore sediment transport and beach profile evolution, Ph.D thesis, Imperial College, London.
Nuntakamol, P., & Rattanapitikon, W. (2011). Transformation of mean and highest one-tenth wave heights using representative wave approach. Kasetsart Journal - Natural Science, 45(6), 1171–1181.
Rattanapitikon, W., Karunchintadit, R., & Shibayama, T. (2003). Irregular wave height transformation using representative wave approach. Coastal Engineering Journal, 45(3), 489–510. https://doi.org/10.1142/S0578563403000865
Rattanapitikon, W., & Shibayama, T. (1998). Energy dissipation model for irregular breaking waves. Coastal Engineering Journal, 40(4), 327–346. https://doi.org/10.1061/9780784404119.007
Rattanapitikon, W., Tran, K. Q., & Shibayama, T. (2015). Estimation of Maximum Possible Wave Heights in Surf Zone. Coastal Engineering Journal, 57(2), 1550001-1-1550001–1550019. https://doi.org/10.1142/S0578563415500011
Smith, E. R., & Kraus, N. C. (1990). Laboratory study on macro-features of wave breaking over bars and artificial reefs. In Technical Report CERC-90-12, WES, US Army Corps of Engineers. https://apps.dtic.mil/sti/citations/ADA225689
Southgate, H. N., & Nairn, R. B. (1993). Deterministic profile modelling of nearshore processes. Part 1. Waves and currents. Coastal Engineering, 19, 27–56.
Thornton, E. B., & Guza, R. T. (1983). Transformation of wave height distribution. Journal of Geophysical Research, 88(C10), 5925–5938. https://doi.org/10.1029/JC088iC10p05925
Tran, K. Q., Duong, N. T., Luu, L. X., Tran, L. H., & Rattanapitikon, W. (2023). Development of novel parametric wave model for irregular wave height transformation. Ocean Engineering, 278(March), 114493. https://doi.org/10.1016/j.oceaneng.2023.114493