Tất Anh Thư * , Nguyễn Nhựt Hào , Đặng Quốc Đạt Võ Thị Bích Thủy

* Tác giả liên hệ (tathu@ctu.edu.vn)

Abstract

To determine the dosage of vermicompost and chemical fertilizers on the changes of soil bio-chemical properties, yield, and quality of fruit cove bean Rado 11. The experiment was arranged in a completely randomized design, two-factor, three repetitions, eight fertilizer formula. Factor A is two levels of inorganic fertilizers (1) 100% NPK (144N-126P2O5-100K2O) and (2) 50% NPK (72N-63P2O5-50K2O). Factor B is the four levels of vermicomposting (0, 10, 20, and 30 tons/ha). The results indicated that the content of useful nutrients (N, P) and the number of bacteria in the soil increased with the dose of chemical fertilizers and vermicompost.  Addition of 30 tons/ha of vermicompost improved soil pH, available N, P, and total soil bacteria compared with the control (without vermicompost). In this study, we investigated the effect of dose vermicompost and chemical fertilizer application on fruit cove bean growth, yield, and quality. The results show that the number of branches/plants, height plant, number of fruits, fruit yield and % brix  highest at dose 30 tons of vermicompost and 100% chemical fertilizers, the lowes at treatment without vermicompost và 50% chemical fertilizers. Correlation analysis results showed that there was a positive correlation between the dosage of vermicompost and chemical fertilizers to the increase in soil pH, available P, total soil bacteria, growth, yield composition and yield of fruit cove beans.

Keywords: Bush bean, vermicompost, chemical fertilizers

Tóm tắt

Nhằm xác định liều lượng phân trùn quế và phân hóa học đến sự thay đổi đặc tính hóa học-sinh học đất, năng suất và chất lượng trái đậu cove lùn Rado 11. Thí nghiệm được bố trí theo thể thức hoàn toàn ngẫu nhiên, hai nhân tố, 8 tổ hợp phân bón, ba lặp lại. Nhân tố A là hai mức độ phân hóa học (1) 100% NPK (144N-126P2O5-100K2O) và (2) 50% NPK (72N-63P2O5-50K2O). Nhân tố B là bốn mức độ bón phân trùn quế (0, 10, 20 và 30 tấn/ha). Kết quả cho thấy đạm hữu dụng, lân hữu dụng và tổng vi khuẩn trong đất gia tăng theo liều lượng phân hóa học và phân trùn quế. Bón 30 tấn/ha phân trùn quế giúp gia tăng pH đất, dinh dưỡng hữu dụng (N và P) và tổng vi khuẩn trong đất so với đối chứng (không bón phân trùn quế). Kết quả theo dõi ảnh hưởng của liều lượng phân trùn quế và phân hóa học đến sinh trưởng, năng suất và chất lượng đậu cove đã ghi nhận được số cành, chiều cao cây, số trái, năng suất trái và độ brix đạt cao nhất ở mức bón 30 tấn phân trùn quế và 100% phân hóa học, thấp nhất ở mức bón 50% NPK và không bón phân trùn quế. Có mối tương quan thuận giữa liều lượng phân trùn quế và phân hóa học đến gia tăng pH đất, P hữu dụng,...

Từ khóa: Đậu cove lùn, phân trùn quế, phân hóa học, đậu bụi

Article Details

Tài liệu tham khảo

Ahiwar, C. S., & Husaain, A. (2015). Effect of vermicompost on growth, yield and quality of vegetable ctops. International Journal of Applied and Pure Science and Agriculture, 1(8), 49-56.

Alikhani, H. A., Hemati A. Rashtbari M. Tiegs S. D., & Etesami, H. (2017). Enriching vermicompost using P-solubilizing and N-fixing bacteria under different temperature conditions. Commun. Soil Sci. Plant Anal., 48(2), 139-147. https://doi.org/10.1080/00103624.2016.1206913

Arancon, N. Q., Edwards, C. A., Bierman, P. Metzger, J. D., Lee, S., & Welch, C. (2003). Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries: the 7th international symposium onearthworm ecology Cardiff Wales 2002. Pedobiologia, 4 (5-6), 731-735.
https://doi.org/10.1016/S0031-4056(04)70260-7

Arancon, N. Q., Edwards, C. I., & Bierman, P. (2006). Influences of vermicomposts on field strawberries-2: Effects on soil microbiological and chemical properties. Bioresource Technology, 97, 831-840. https://doi.org/10.1016/j.biortech.2005.04.016

Arancon, N. Q., Pant A. Radovich T., Hue N. V., Potter J. K., & Converse, C. E. (2012). Seed germination and seedling growth of tomato and lettuce as affected by vermicompost water extracts (Teas). Hort Science, 47, 1722–1728. https://doi.org/10.21273/HORTSCI.47.12.1722

Atiyeh, R., Lee, S. Edwards, C. ,Arancon, Q., & Metzger, J. (2002). The influence of humic acids derived from earthworm processed organic wastes on plant growth. Bioresour. Technol, 84(1), 7-14. https://doi.org/10.1016/S0960-8524(02)00017-2

De Almeida Costa, G. E., Da Silva Queiroz- Monici, K., Pissini Machado Reis, S. M., & De Oliveira, A. C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), 327-330. https://doi.org/10.1016/j.foodchem.2004.11.020

Hoque, T. S., Hasan, A. K., Hasan, M. A., Nahar, N. Dey, D. K., Mia, S. Solaiman, Z. M., & Kader, M. A. (2022). Nutrient Release from Vermicompost under Anaerobic Conditions in Two Contrasting Soils of Bangladesh and Its Effect on Wetland Rice Crop. Agriculture, 12, 376.
https:// doi.org/10.3390/agriculture12030376. https://doi.org/10.3390/agriculture12030376

Huang, K., Li, F., Wei, Y., Fu, X., & Chen, X. (2014). Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour Technol, 170, 45–52. https://doi.org/10.1016/j.biortech.2014.07.058

Jones, A. L., (1999). Phaseolus bean: Post-harvest operations. AGSI/FAO Mejia D. Rome: Centro Internacional de Agricultura Tropical, FAO, 1-24.

Kedir, J., & Bikiltu, T. (2022). Evaluation of Vermicompost and its Application Effect on Growth and Yield of Tomato (L. Esculetum) in Wondo Genet. Ethiopia nternational Research Journal of Agricultural Science and Soil Science Vol 11(5), 1-4.

Keskin, S. O., Ali, T. M., Ahmed, J. Shaikh, M. Siddiq, M., & Uebersax, M. A. (2022). Physico-chemical and functional properties of legume protein, starch, and dietary fiber - A review. Legume Science, 4(1), e117. https://doi.org/10.1002/leg3.117.

Kumar, D., Singh, B. P., & Kumar, P. (2004). An overview of the factors affecting sugar contentof potatoes. Annals of Applied Biology, 145(3), 247-256.
https://doi.org/10.1111/j.1744-7348.2004.tb00380.x

Lalander, C. H., Komakech A. J., & Vinneras, B. (2015). Vermicomposting as manure management strategy for urban small-holder animal farms -Kampala case study. Waste Manag, 39, 96–103. https://doi.org/10.1016/j.wasman.2015.02.009

Lazcano, C., Arnold, J., Tato, A., Zaller, J. G., & Domínguez, J. (2009). Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Spanish Journal of Agricultural Research 7, 944-951.
https://doi.org/10.5424/sjar/2009074-1107

Li, J., Cooper, J. M., Lin, Z. A., Li, Y., Yang, X., & Zhao, B. (2015). Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 96, 75-87. https://doi.org/10.1016/j.apsoil.2015.07.001

Masciandaro, G., Ceccanti, B., & Gracia, C. (1997). Soil agro-ecological management: fertigation and vermicompost treatments. Bioresour Technol, 59, 199–206.
https://doi.org/10.1016/S0960-8524(96)00142-3

Nurhidayati, N. Masyhuri., N, M., & Indiyah, M. (2018). Direct and residual efect of various vermicompost on soil nutrient and nutrient uptake dynamics and productivity of four mustard Pak‑Coi (Brassica rapa L.) sequences in organic farming system. International Journal of Recycling of Organic Waste in Agriculture, 7, 173–181
https://doi.org/10.1007/s40093-018-0203-0.

Peyvast, G., Olfati, J. A., Madeni, S. Forghani, A., & Samizadeh, H. (2008). Vermicompost as a soil supplement to improve growth and yield of parsley Intl. J. Veg. Sci,. 14, 82- 92. https://doi.org/10.1080/19315260801890740

Rahman, M. M., Sofian-Azirun, M., & Boyce, A. N. (2013). Response of nitrogen fertilizer and legumes residues on biomass Production and utilization in rice-legumes rotation. Theof Animal& Plant Sci., 23(2), 589-595.

Ravindran, B. Wong, J. W. C., Selvam, A., & Sekaran, G. (2016). Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresour Technol, 217, 200–204. https://doi.org/10.1016/j.biortech.2016.03.032

Scaglia, B. Nunes, R. R., Rezende, M. O. O., Tambone, F., & Adani, F. (2016). Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost. Sci Total Environ., 562, 289-95. https://doi.org/10.1016/j.scitotenv.2016.03.212

Shi-Wei, Z., & Fu-Zhen, H. (2019). The nitrogen uptake efficiency from 15N labeled chemicalfertilizer in the presence of earthworm manure (cast). Adv. Manage. Conserv. Soil Fauna, 539–542.

Singh, R. Sharma, R.R., Kumar, S. Gupta, R.K., & Patil, R.T. (2008). Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresource Technology, 99, 8507-8511. https://doi.org/10.1016/j.biortech.2008.03.034

Singh, V. Prasad, V. M., Kasera, S., & Mishra, S. (2017). Influence of different organic and inorganic fertilizer combinations on growth, yield and quality of cucumber (Cucumis sativus L .) under protected cultivation. Journal of Pharmacognosyand Phytochemistry, 6(4), 1079–1082.

Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M.A., Johnston, C. T., & Sumner M. E. (1996). Methods of soil analysis part 3 - Chemical methods. American Society of Agronomy, Inc. Madison, Wisconsin, USA, 1309 pages. https://doi.org/10.2136/sssabookser5.3

Tomati, U., Grappelli, A., & Galli, E. (1988). The hormone-like effect of earthworm casts on plant growth. Biol. Fert. Soils, 5, 288-294. https://doi.org/10.1007/BF00262133

Tugume, E. (2018). The effect of commercial organic fertilizers on the yield of bush Beans (Pharseoulus vulgaris) in Central Uganda. MSc Thesis. November 2018 Uganda Martyrs University Library. P.O. Box5498 Kampala -Uganda
http://library.umu.ac.ug.

Theunissen, J. Nhakidemi, P., & Laublsher, C. P. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. Int. J. Phys. Sci, 5, 1964–1973.

Thy, S., & Buntha, P. (2005). Evaluation of fertilizer of fresh solid manure, composted manure or biodigester effluent for growing Chinese cabbage (Brassica pekinen-sis). Livestock Res. RuralDev, 17(3),149-154.

Zaremanesh, H. Nasiri, B., & Amiri, A. (2017). The effect of vermicompost biological fertilizer on corn yield. J. Mater. Environ. Sci., 8(1),154–159.

Zhang, N., Ren, Y., Shi, Q., Wang, X., Wei, M., & Yang, F. (2011). Effects of vermicompost on quality and yield of watermelon. China Vegetables 6:76-79.