Kim Lavane * , Nguyễn Trường Thành , Huỳnh Vương Thu Minh Trần Văn Tỷ

* Tác giả liên hệ (klavane@ctu.edu.vn)

Abstract

Recycling treated wastewater offers a potential solution to reduce water demand stresses. Due to high potential health risks and environmental impacts, related research on wastewater recycling has been focused on technical issues to improve the treated water quality for appropriate applications. Although advanced treatment technologies can remove contaminants to meet criteria and guidelines, high capital and operational costs and side-effective concerns about byproducts have still existed. Soil-based biological processes potentially provide cost-effective and sustainable treatment strategies for water recycling and management. However, they have not yet been recognized to approach to what extent that treated effluents are suitable to supplement the existing water sources in different using sectors. In this review, low-cost treatment methods by using soil-base filtration columns to stimulate increasing microbial activities were critically analyzed and discussed based on the results of previous studies.

Keywords: Filtration column, low-cost technology, microbial activity, reuse, wastewater treatment

Tóm tắt

Tái chế nước thải là giải pháp tiềm năng để làm dịu căng thẳng nhu cầu nước. Do tiềm ẩn những rủi ro sức khỏe và tác động môi trường, các nghiên cứu tái chế nước thải đã tập trung vào vấn đề kỹ thuật để cải thiện chất lượng nước sau xử lý cho phù hợp với mục đích sử dụng. Mặc dù các công nghệ tiên tiến có thể xử lý nước thải đạt tiêu chuẩn và phù hợp mục đích tái sử dụng nhưng vẫn còn tồn tại về chi phí đầu tư và vận hành cao và phát sinh các sản phẩm phụ. Các quy trình sinh học có chi phí xử lý thấp và bền vững cho xử lý và quản lý nguồn nước. Tuy nhiên, phương pháp này vẫn chưa được nhìn nhận theo hướng tiếp cận về mức độ xử lý nước thải phù hợp để tái sử dụng. Trong tổng quan này, các phương pháp xử lý chi phí thấp sử dụng các cột lọc cát, đất để kích thích các hoạt động của vi sinh vật được phân tích và thảo luận dựa trên các kết quả nghiên cứu trước đó.

Từ khóa: Công nghệ chi phí thấp, hoạt động vi sinh vật, cột lọc, tái sử dụng, xử lý nước thải

Article Details

Tài liệu tham khảo

Anderson, R. T., Rooney-Varga, J. N., Gaw, C. V., & Lovley, D. R. (1998). Anaerobic Benzene Oxidation in the Fe(III) Reduction Zone of Petroleum-Contaminated Aquifers. Environmental Science & Technology, 32(9), 1222-1229. doi:10.1021/es9704949

Aukema, K. G., Kasinkas, L., Aksan, A., & Wackett, L. P. (2014). Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters. Applied and Environmental Microbiology, 80(16), 4968-4976. doi:10.1128/aem.01100-14

Baykuş, N., & Karpuzcu, M. (2021). An investigation into the role of treatment performance and soil characteristics of soil-based wastewater treatment systems. Water Science and Technology, 85. doi:10.2166/wst.2021.512

Benner, J., Helbling, D. E., Kohler, H.-P. E., Wittebol, J., Kaiser, E., Prasse, C., . . . Boon, N. (2013). Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Research, 47(16), 5955-5976. doi:http://dx.doi.org/10.1016/j.watres.2013.07.015

Calvo-Bado, L. A., Pettitt, T. R., Parsons, N., Petch, G. M., Morgan, J. A. W., & Whipps, J. M. (2003). Spatial and Temporal Analysis of the Microbial Community in Slow Sand Filters Used for Treating Horticultural Irrigation Water. Applied and Environmental Microbiology, 69(4), 2116-2125. doi:10.1128/aem.69.4.2116-2125.2003

Casida, L. E. (1989). Protozoan Response to the Addition of Bacterial Predators and Other Bacteria to Soil. Applied and Environmental Microbiology, 55(8), 1857-1859.

Christen, K. (1998). Wastewater reuse: Water shortage solution or long-term nightmare? Environmental Science & Technology, 32(19), 447A-447A. doi:10.1021/es983747m

Decamp, O., Warren, A., & Sanchez, R. (1999). The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Sci. Technol., 40(Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 91-98. doi:10.1016/s0273-1223(99)00444-8

Enzinger, R. M., & Cooper, R. C. (1976). Role of bacteria and protozoa in the removal of Escherichia coli from estuarine waters. Appl Environ Microbiol, 31(Copyright (C) 2012 U.S. National Library of Medicine.), 758-763.

Gonzalez, J. M., Iriberri, J., Egea, L., & Barcina, I. (1990). Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa. Appl Environ Microbiol, 56(Copyright (C) 2013 U.S. National Library of Medicine.), 1851-1857.

Gülay, A., Tatari, K., Musovic, S., Mateiu, R. V., Albrechtsen, H.-J., & Smets, B. F. (2014). Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment. Applied and Environmental Microbiology, 80(22), 7010-7020. doi:10.1128/aem.01959-14

Habte, M., & Alexander, M. (1975). Protozoa as agents responsible for the decline of Xanthomonas campestris in soil. Appl Microbiol, 29(Copyright (C) 2012 U.S. National Library of Medicine.), 159-164.

Hahn, M. W., & Hofle, M. G. (2001). Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol., 35(Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 113-121. doi:10.1111/j.1574-6941.2001.tb00794.x

Hamilton, A. J., Stagnitti, F., Premier, R., Boland, A.-M., & Hale, G. (2006). Quantitative Microbial Risk Assessment Models for Consumption of Raw Vegetables Irrigated with Reclaimed Water. Applied and Environmental Microbiology, 72(5), 3284-3290. doi:10.1128/aem.72.5.3284-3290.2006

Hamoda, M. F., Al-Ghusain, I., & Al-Mutairi, N. Z. (2004). Sand filtration of wastewater for tertiary treatment and water reuse. Desalination, 164(3), 203-211. doi:10.1016/S0011-9164(04)00189-4

Jahn, M. K., Haderlein, S. B., & Meckenstock, R. U. (2005). Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and o-Xylene in Sediment-Free Iron-Reducing Enrichment Cultures. Applied and Environmental Microbiology, 71(6), 3355-3358. doi:10.1128/aem.71.6.3355-3358.2005

Jr, F. C., & Das, A. (2002). Adhesion of Dissimilatory Fe(III)-Reducing Bacteria to Fe(III) Minerals. Geomicrobiology Journal, 19(2), 161-177. doi:10.1080/01490450252864262

Kazumi, J., Haggblom, M. M., & Young, L. Y. (1995). Degradation of Monochlorinated and Nonchlorinated Aromatic Compounds under Iron-Reducing Conditions. Applied and Environmental Microbiology, 61(11), 4069-4073.

Kim, L., Yan, T., Yost, R., & Porter, G. (2021). A Sustainable and Low-Cost Soil Filter Column for Removing Pathogens from Swine Wastewater: The Role of Endogenous Soil Protozoa. 13(18), 2472.

Kota, S., Borden, R. C., & Barlaz, M. A. (1999). Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiology Ecology, 29(2), 179-189. doi:10.1111/j.1574-6941.1999.tb00609.x

Küsel, K., Wagner, C., Trinkwalter, T., Gößner, A. S., Bäumler, R., & Drake, H. L. (2002). Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils. FEMS Microbiology Ecology, 40(1), 73-81. doi:10.1111/j.1574-6941.2002.tb00938.x

Langenbach, K., Kuschk, P., Horn, H., & Kästner, M. (2009). Slow Sand Filtration of Secondary Clarifier Effluent for Wastewater Reuse. Environmental Science & Technology, 43(15), 5896-5901. doi:10.1021/es900527j

Levine, A. D., & Asano, T. (2004). Peer Reviewed: Recovering Sustainable Water from Wastewater. Environmental Science & Technology, 38(11), 201A-208A. doi:10.1021/es040504n

Lovley, D. R. (1987). Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiology Journal, 5(3-4), 375-399. doi:10.1080/01490458709385975

Lovley, D. R., & Lonergan, D. J. (1990). Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Applied and Environmental Microbiology, 56(6), 1858-1864.

Mauck, B. S., & Roberts, J. A. (2007). Mineralogic Control on Abundance and Diversity of Surface-Adherent Microbial Communities. Geomicrobiology Journal, 24(3-4), 167-177. doi:10.1080/01490450701457162

Murase, J., Noll, M., & Frenzel, P. (2006). Impact of Protists on the Activity and Structure of the Bacterial Community in a Rice Field Soil. Applied and Environmental Microbiology, 72(8), 5436-5444. doi:10.1128/aem.00207-06

Nguyễn, H. C., Phạm, N. T., Phạm, V. T., Nguyễn, X. L., Tăng, L. H. N., Trương, T. P., & Huỳnh, T. T. L. J. C. T. U. J. o. S. (2021). Sử dụng đất phèn tiềm tàng nung hấp phụ lân trong nước thải sau túi ủ biogas.

Onesios-Barry, K. M., Berry, D., Proescher, J. B., Sivakumar, I. K. A., & Bouwer, E. J. (2014). Removal of Pharmaceuticals and Personal Care Products during Water Recycling: Microbial Community Structure and Effects of Substrate Concentration. Applied and Environmental Microbiology, 80(8), 2440-2450. doi:10.1128/aem.03693-13

Onesios, K. M., Yu, J. T., & Bouwer, E. J. (2009). Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation, 20(4), 441-466. doi:10.1007/s10532-008-9237-8

Pang, C. M., & Liu, W.-T. (2006). Biological Filtration Limits Carbon Availability and Affects Downstream Biofilm Formation and Community Structure. Applied and Environmental Microbiology, 72(9), 5702-5712. doi:10.1128/aem.02982-05

Pattnaik, R., Yost, R. S., Porter, G., Masunaga, T., & Attanandana, T. (2008). Improving multi-soil-layer (MSL) system remediation of dairy effluent. Ecological Engineering, 32(1), 1-10. doi:http://dx.doi.org/10.1016/j.ecoleng.2007.08.006

Petala, M., Tsiridis, V., Samaras, P., Zouboulis, A., & Sakellaropoulos, G. P. (2006). Wastewater reclamation by advanced treatment of secondary effluents. Desalination, 195(1-3), 109-118. doi:10.1016/j.desal.2005.10.037

Pinto, A. J., & Love, N. G. (2012). Bioreactor Function under Perturbation Scenarios Is Affected by Interactions between Bacteria and Protozoa. Environmental Science & Technology, 46(14), 7558-7566. doi:10.1021/es301220f

Radjenovic, J., Petrovic, M., Ventura, F., & Barcelo, D. (2008). Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res., 42(14), 3601-3610. doi:10.1016/j.watres.2008.05.020

Ravva, S. V., Sarreal, C. Z., & Mandrell, R. E. (2010). Identification of protozoa in dairy lagoon wastewater that consume Escherichia coli O157:H7 preferentially. PLoS One, 5(12), e15671.

Rønn, R., McCaig, A. E., Griffiths, B. S., & Prosser, J. I. (2002). Impact of Protozoan Grazing on Bacterial Community Structure in Soil Microcosms. Applied and Environmental Microbiology, 68(12), 6094-6105. doi:10.1128/aem.68.12.6094-6105.2002

Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Mezcua, M., Hernando, M. D., Letón, P., . . . Fernández-Alba, A. R. (2008). Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Research, 42(14), 3719-3728. doi:http://dx.doi.org/10.1016/j.watres.2008.06.008

Rose, J. B., Dickson, L. A., Farrah, S. R., & Carnahan, R. P. (1996). Removal of pathogenic and indicator microorganisms by a full-scale water reclamation facility. Water Res., 30(11), 2785-2797. doi:10.1016/S0043-1354(96)00188-1

Ryu, H., Alum, A., & Abbaszadegan, M. (2005). Microbial Characterization and Population Changes in Nonpotable Reclaimed Water Distribution Systems. Environ. Sci. Technol., 39(22), 8600-8605. doi:10.1021/es050607l

Schnoor, J. L. (2009). NEWater Future? Environ. Sci. Technol., 43(17), 6441-6442. doi:10.1021/es902153f

Stein, K., Ramil, M., Fink, G., Sander, M., & Ternes, T. A. (2008). Analysis and Sorption of Psychoactive Drugs onto Sediment. Environmental Science & Technology, 42(17), 6415-6423. doi:10.1021/es702959a

Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.-J., Haist-Gulde, B., . . . Zulei-Seibert, N. (2002). Removal of Pharmaceuticals during Drinking Water Treatment. Environmental Science & Technology, 36(17), 3855-3863. doi:10.1021/es015757k

Tobler, N. B., Hofstetter, T. B., Straub, K. L., Fontana, D., & Schwarzenbach, R. P. (2007). Iron-Mediated Microbial Oxidation and Abiotic Reduction of Organic Contaminants under Anoxic Conditions. Environmental Science & Technology, 41(22), 7765-7772. doi:10.1021/es071128k

Wakatsuki, T., Esumi, H., & Omura, S. (1993). High performance and nitrogen and phosphorus-removable on-site domestic waste water treatment system by multi-soil-layering method. Water Sci. Technol., 27(Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.), 31-40.

Weber-Shirk, M. L., & Dick, R. I. (1997). Biological mechanisms in slow sand filters. Journal (American Water Works Association), 89(2), 72-83. doi:10.2307/41295732

Wright, D. A., Killham, K., Glover, L. A., & Prosser, J. I. (1995). Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl. Environ. Microbiol., 61(Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 3537-3543.

Wunder, D. B., Bosscher, V. A., Cok, R. C., & Hozalski, R. M. (2011). Sorption of antibiotics to biofilm. Water Research, 45(6), 2270-2280. doi:http://dx.doi.org/10.1016/j.watres.2010.11.013

Zearley, T. L., & Summers, R. S. (2012). Removal of Trace Organic Micropollutants by Drinking Water Biological Filters. Environmental Science & Technology, 46(17), 9412-9419. doi:10.1021/es301428e