Nghiên cứu sử dụng vật liệu Cu/ZIF làm xúc tác xử lý malachite green với sự có mặt của hydrogen peroxide
Abstract
This study aims to synthesize a kind of bimetallic Cu/Co zeolitic imidazole frameworks (Cu/ZIF-67) and evaluate the material’s catalytic activity. Cu/ZIF-67 has been successfully synthesized in ethanol solvent by ultrasound method. The synthesized material was analyzed by several advanced analytics methods. The material has a high surface area, with a Brunauer-Emmett-Teller (BET) surface area of 1241.8 m2.g-1, a polyhedral structure, and relatively uniform particle size. In this study, the synthesized Cu/ZIF-67 was used as a potential catalyst for the treatment of malachite green in the presence of hydrogen peroxide. The results showed that malachite green decomposition efficiency was more than 98% at H2O2 concentration of 0.06 M, Cu/ZIF-67 catalyst concentration of 50 mg/L, and the initial malachite green concentration of 50 mg/L for 30 minutes at room temperature.
Tóm tắt
Nghiên cứu này nhằm tổng hợp vật liệu khung lưỡng kim Cu/ZIF-67 và đánh giá khả năng xúc tác của nó. Cu/ZIF-67 được tổng hợp thành công trong dung môi ethanol bằng sóng siêu âm. Vật liệu được phân tích tính chất đặc trưng bằng các phương pháp phân tích hiện đại. Kết quả cho thấy vật liệu có cấu trúc đa diện với kích thước tinh thể đồng đều cùng diện tích bề mặt riêng lớn với diện tích bề mặt Brunauer-Emmett-Teller (BET) là 1241,8 m2.g-1. Bên cạnh đó, vật liệu được đánh giá khả năng xúc tác xử lý malachite green với sự có mặt của hydrogene peroxide. Kết quả cho thấy rằng hiệu suất xử lý malachite green đạt đến hơn 98% với nồng độ H2O2 là 0,06 M, lượng Cu/ZIF-67 sử dụng là 50 mg/L, nồng độ malachite green ban đầu là 50 mg/L, được xử lý trong 30 phút ở nhiệt độ phòng.
Article Details
Tài liệu tham khảo
Budi, C. S., Deka, J. R., Hsu, W. C., Saikia, D., Chen, K. T., Kao, H. M., & Yang, Y. C. (2021). Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: an excellent catalyst for reduction of synthetic dyes and nitroarenes. Journal of hazardous materials, 407, 124392. https://doi.org/10.1016/j.jhazmat.2020.124392
Culp, S. J., & Beland, F. A. (1996). Malachite green: a toxicological review. Journal of the American College of Toxicology, 15(3), 219-238. https://doi.org/10.3109/10915819609008715
Dang, G. H., et al. (2020). Removal of Congo red and malachite green from aqueous solution using heterogeneous Ag/ZnCo-ZIF catalyst in the presence of hydrogen peroxide. Green Processing Synthesis, 9(1), 567-577. https://doi.org/10.1515/gps-2020-0060
Gholinejad, M., Naghshbandi, Z., & Sansano, J. M. (2020). Co/Cu bimetallic ZIF as New heterogeneous catalyst for reduction of nitroarenes and dyes. Applied Organometallic Chemistry, 34(4), e5522. https://doi.org/10.1002/aoc.5522
Golob, V., Vinder, A., & Simonič, M. (2005). Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dye and Pigments, 67(2), 93-97. https://doi.org/10.1016/j.dyepig.2004.11.003
Lin, K.-Y. A., & Lee, W.-D. (2016). Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chemical Engineering Journal, 284, 1017-1027. https://doi.org/10.1016/j.cej.2015.09.075
Lin, K.-Y. A., & Chang, H.-A. (2015). Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere, 139, 624-631. https://doi.org/10.1016/j.chemosphere.2015.01.041
Ma, J., Wang, H., Yang, X., Chai, Y., & Yuan, R. (2015). Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 3(22), 12038-12043. https://doi.org/10.1039/C5TA00890E
Ma, Y., Ni, M., & Li, S. (2018). Optimization of malachite green removal from water by TiO2 nanoparticles under UV irradiation. Nanomaterials, 8(6), 428. https://doi.org/10.3390/nano8060428
Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D. K., & Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General, 490, 42-49. https://doi.org/10.1016/j.apcata.2014.10.053
Singh, L., Rekha, P., & Chand, S. (2016). Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye. Separation and Purification Technology, 170, 321-336. https://doi.org/10.1016/j.seppur.2016.06.059
Wu, Y., Zeng, S., Wang, F., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst. Separation and Purification Technology, 154, 161-167. https://doi.org/10.1016/j.seppur.2015.09.022
Xu, Y., Li, Z., Su, K., Fan, T., & Cao, L. (2018). Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chemical Engineering Journal, 341, 371-382. https://doi.org/10.1016/j.cej.2018.02.048
Yang, H., He, X.-W., Wang, F., Kang, Y., & Zhang, J. (2012). Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 22(41), 21849-21851. https://doi.org/10.1039/C2JM35602C
Zhang, G., et al. (2020). Metal-free generation of hydroxyl radicals by benzoate-mediated decomposition of peroxides. Chemical Communications, 56(54), 7443-7446. https://doi.org/10.1039/D0CC02633F