Phạm Thanh Hùng Nguyễn Thanh Sang *

* Tác giả liên hệ (ntsang@vnkgu.edu.vn)

Abstract

In this paper, optimality conditions and duality theorems for a positively properly efficient solution of a nonsmooth fractional semi-infinite optimization problem with data uncertainty in the constraints are studied via Mordukhovich subdifferential. Some examples are given to illustrate the obtained results.

Keywords: Fractional semi-infinite optimization problem, Generalized convex function, Mond-Weir duality, Mordukhovich subdifferential, optimality condition

Tóm tắt

Trong bài viết này, điều kiện tối ưu và các định lý đối ngẫu cho nghiệm chính thường của bài toán tối ưu nửa vô hạn không trơn dạng phân số với dữ liệu không chắc chắn trong những ràng buộc được nghiên cứu thông qua dưới vi phân Mordukhovich. Kết quả đạt được của nghiên cứu được chứng minh thông qua những ví dụ minh họa cụ thể.

Từ khóa: Bài toán tối ưu nửa vô hạn dạng phân số, Điều kiện tối ưu, Dưới vi phân Mordukhovich, Đối ngẫu Mond-Weir, Hàm lồi tổng quát

Article Details

Tài liệu tham khảo

Chen, J. W., Kobis, E. & Yao, J. C. (2019). Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. Journal of Optimization Theory and Applications, 181, 411 - 436. https://doi.org/10.1007/s10957-018-1437-8

Chuong, T. D. (2013). Optimality and duality for proper and isolated efficiencies in multiobjective optimization. Nonlinear Analysis 76, 93 - 104. https://doi.org/10.1016/j.na.2012.08.005

Chuong, T. D., & Kim, D. S. (2014). Nonsmooth semi-infinite multiobjective optimization problems. Journal of Optimization Theory and Applications 160, 748 - 762. https://doi.org/10.1007/s10957-013-0314-8

Chuong, T. D., & Yao, J. C. (2014). Isolated and proper efficiencies in semi-infinite vector optimization problems. Journal of Optimization Theory and Applications 162, 447 - 462 (2014). https://doi.org/10.1007/s10957-013-0425-2

Chuong, T. D. (2016). Optimality and duality for robust multiobjective optimization problems. Nonlinear Analysis, 134, 127 - 143. https://doi.org/10.1016/j.na.2016.01.002

Chuong, T. D. (2016). Nondifferentiable fractional semi-infinite multiobjective optimization problems. Operations Research Letters, 44, 260 - 266. https://doi.org/10.1016/j.orl.2016.02.003

Chuong, T. D. (2020). Robust optimality and duality in multiobjective optimization problems under data uncertainty. SIAM Journal on Optimization, 30, 1501 - 1526. https://doi.org/10.1137/19M1251461

Dinh, N., Goberna, M. A., Lopez, M. A., & Volle, M. A. (2017). unifying approach to robust convex infinite optimization duality. Journal of Optimization Theory and Applications, 174, 650 - 685. https://doi.org/10.1007/s10957-017-1136-x

Dinh, N., Long, D. H., & Yao, J. C. (2020). Duality for Robust Linear In nite Programming Problems Revisited. Vietnam Journal of Mathematics, 46, 293 - 328. https://doi.org/10.1007/s10013-018-0283-1

Fakhar, M., Mahyarinia, M. R., & Zafarani, J. (2018). On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization. European Journal of Operational Research, 265, 39 - 48. https://doi.org/10.1016/j.ejor.2017.08.003

Fakhara, M., Mahyarinia, M. R., & Zafarani, J. (2019). On approximate solutions for nonsmooth robust multiobjective optimization problems. Optimization, 68, 1653 - 1683. https://doi.org/10.1080/02331934.2019.1579212

Khanh, P. Q., & Tung, N. M. (2020). On the Mangasarian - Fromovitz constraint qualification and Karush - Kuhn - Tucker conditions in nonsmooth semi-infinite multiobjective programming. Optimization Letters, 14, 2055-2072. https://doi.org/10.1007/s11590-019-01529-3

Khantree, C., & Wangkeeree, R. (2019). On quasi approximate solutions for nonsmooth robust semi-infinite optimization problems. Carpathian Journal of Mathematics, 35, 417 - 426. https://doi.org/10.37193/CJM.2019.03.16

Mordukhovich, B. S. (2006). Variational Analysis and Generalized Differentiation. I: Basic Theory. Springer, Berlin. https://doi.org/10.1007/3-540-31247-1

Singh, V., Jayswal, A., Stancu-Minasian, I. & Rusu-Stancu, A. M. (2021). Isolated and proper efficiencies for semi-infinite multiobjective fractional problems. Series A Applied Mathematics and Physics, 83, 111 - 124.

Son, T. Q., Tuyen, N. V., & Wen, C. F. (2020). Optimality conditions for approximate Pareto solutions of a nonsmooth vector optimization problem with an infinite number of constraints. Acta Mathematica Vietnamica, 45, 435 - 448. https://doi.org/10.1007/s40306-019-00358-x

Sun, X. K., Teo, K. L., Zheng, J., & Liu, L. (2020). Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty. Optimization, 69, 2109 - 2129. https://doi.org/10.1080/02331934.2020.1763990

Tung, L. T. (2020). Karush - Kuhn - Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferentials. Numerical Functional Analysis and Optimization, 41, 659 - 684. https://doi.org/10.1080/01630563.2019.1667826

Tung, L. T. (2021). Strong Karush - Kuhn - Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming. Bulletin of the Brazilian Mathematical Society, 52, 1 - 22. https://doi.org/10.1007/s00574-019-00190-9