Bào chế và khảo sát hoạt tính kháng oxy hóa của hệ vi hạt từ fibroin tơ tằm chứa dịch chiết hoa Wedelia trilobata L.
Abstract
This study aimed to evaluate the ability to load polyphenol compounds from the flower extract of Wedelia trilobata L. (WT) into silk fibroin microparticles, and investigate the antioxidant activity of the products, using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) method. The WT extract was loaded into the microparticles by co-condensation method. The extract loaded fibroin microparticles possessed an average size of 7.11 µm, a high entrapment efficiency (74.10%), and an ability to control the drug release rate in the buffer pH 7.4. Moreover, the WT extract had a very high antioxidant activity (IC50 = 8.67 µg/mL) and the extract loaded microparticles also retained their antioxidant capacity (27.89%, 44.75%, and 52.61%, after 30, 90, and 180 min of incubation, respectively). Due to the ability of microparticles to sustain release the active ingredients into the dispersion medium, their ability to scavenge free radicals was time-dependent. Conclusively, the WT extract loaded fibroin microparticles is a potential application for utilizing in controlled-release formulations.
Tóm tắt
Nghiên cứu được thực hiện nhằm đánh giá khả năng tải các hợp chất polyphenol từ dịch chiết hoa sài đất ba thùy (Wedelia trilobata L. - WT) vào vi hạt fibroin tơ tằm và khảo sát hoạt tính kháng oxy hóa của các sản phẩm, sử dụng phương pháp DPPH (2,2-Diphenyl-1-picrylhydrazyl). Dịch chiết được nạp vào vi hạt bằng phương pháp đồng ngưng tụ. Hệ vi hạt fibroin chứa dịch chiết có kích thước trung bình là 7,11 µm, hiệu suất tải dịch chiết khá cao (74,13%) và có khả năng kiểm soát quá trình giải phóng polyphenol trong hệ đệm pH 7,4. Hơn nữa, dịch chiết WT có hoạt tính kháng oxy hóa rất cao (IC50=8,67 µg/mL) và vi hạt sau khi được tải dịch chiết cũng giữ được khả năng kháng oxy hóa (ở các mốc thời gian 30, 90, 180 phút, lần lượt là 27,89%, 44,75%, 52,61%). Do hệ vi hạt có khả năng giải phóng hoạt chất có kiểm soát, dẫn đến khả năng kháng oxy hóa của hệ phụ thuộc vào thời gian. Tóm lại, hệ vi hạt chứa cao WT là một ứng dụng tiềm năng cho các dạng thuốc phóng thích có kiểm soát.
Article Details
Tài liệu tham khảo
Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., & Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401–416. https://doi.org/10.1016/S0142-9612(02)00353-8
Balekar, N., Nakpheng, T., & Srichana, T. (2014). Wedelia trilobata L.: A phytochemical and pharmacological review. Chiang Mai Journal of Science, 41(3), 590–605.
Banothu, V. (2016). Screening of Antimicrobial and Antioxidative Activities of the plant extracts of Elytraria acaulis. Discovery, 52(247), 1546–1552.
Bayraktar, O., Köse, M., & Baspinar, Y. (2019). Development of olive leaf extract loaded fibroin microparticles by spray drying. Drug Discovery, 13, 39–45.
Crivelli, B., Bari, E., Perteghella, S., Catenacci, L., Sorrenti, M., Mocchi, M., Faragò, S., Tripodo, G., Prina-Mello, A., & Torre, M. L. (2019). Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. European Journal of Pharmaceutics and Biopharmaceutics, 137, 37–45. https://doi.org/10.1016/j.ejpb.2019.02.008
Desai, K. G. H., & Jin Park, H. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23(7), 1361–1394. https://doi.org/10.1081/DRT-200063478
Ekpo, M., Mbagwu, H. O. C., Jackson, C., & Eno, M. A. (2011). Antimicrobial and wound healing activities of centrosema pubescens (leguminosae). JPCS, 1, 1–6.
Elia, R., Guo, J., Budijono, S., Normand, V., Benczédi, D., Omenetto, F., & Kaplan, D. L. (2015). Encapsulation of Volatile Compounds in Silk Microparticles. Journal of Coatings Technology and Research, 12(4), 793–799. https://doi.org/10.1007/s11998-015-9668-1
Fazly Bazzaz, B. S., Arab, A., Emami, S. A., Asili, J., Khayyat, M., & Sahebkar, A. (2013). Antimicrobial and antioxidant activities of methanol, dichloromethane and ethyl acetate extracts of Scutellaria lindbergii Rech.f. Chiang Mai Journal of Science, 40, 49–59.
Ghaeli, I., de Moraes, M. A., Beppu, M. M., Lewandowska, K., Sionkowska, A., Ferreira-da-Silva, F., Ferraz, M. P., & Monteiro, F. J. (2017). Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State. Molecules, 22(8), 1368. https://doi.org/10.3390/molecules22081368
Hcini, K., Lozano-Pérez, A. A., Luis Cenis, J., Quílez, M., & José Jordán, M. (2021). Extraction and Encapsulation of Phenolic Compounds of Tunisian Rosemary (Rosmarinus officinalis L.) Extracts in Silk Fibroin Nanoparticles. Plants, 10(11), 2312. https://doi.org/10.3390/plants10112312
Chethan. (2012). Evaluation of antioxidant and antibacterial activities of methanolic flower extract of Wedelia trilobata (L.) Hitch. African Journal of Biotechnology, 11(41), 9829–9834. https://doi.org/10.5897/ajb11.3729
Joseph, B., & Raj, S. J. (2011). A comparative study on various properties of five medicinally important plants. In International Journal of Pharmacology, 7(2), 206–211. https://doi.org/10.3923/ijp.2011.206.211
Lozano-Pérez, A. A., Rivero, H. C., Pérez Hernández, M. D. C., Pagán, A., Montalbán, M. G., Víllora, G., & Cénis, J. L. (2017). Silk fibroin nanoparticles: Efficient vehicles for the natural antioxidant quercetin. International Journal of Pharmaceutics, 518(1–2), 11–19. https://doi.org/10.1016/j.ijpharm.2016.12.046
Lozano-Pérez, A. A., Rodriguez-Nogales, A., Ortiz-Cullera, V., Algieri, F., Garrido-Mesa, J., Zorrilla, P., Rodriguez-Cabezas, M. E., Garrido-Mesa, N., Utrilla, M. P., De Matteis, L., de la Fuente, J. M., Cenis, J. L., & Gálvez, J. (2014). Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats. International Journal of Nanomedicine, 9, 4507–4520. https://doi.org/10.2147/IJN.S68526
Mardina, V., Mastura, Hamdani, & Sufriadi, E. (2020). Flower of sphagneticola trilobata (L.) J.F Pruski from Aceh, Indonesia: Antioxidant and cytotoxic activity on HeLa cells. IOP Conference Series: Materials Science and Engineering, 1007(1). https://doi.org/10.1088/1757-899X/1007/1/012182
Montalbán, M. G., Coburn, J. M., Lozano-Pérez, A. A., Cenis, J. L., Víllora, G., & Kaplan, D. L. (2018). Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. Nanomaterials, 8(2), 126. https://doi.org/10.3390/nano8020126
Omenetto, F. G., & Kaplan, D. L. (2010). New opportunities for an ancient material. Science (New York, N.Y.), 329(5991), 528–531. https://doi.org/10.1126/science.1188936
Petti, S., & Scully, C. (2009). Polyphenols, oral health and disease: A review. Journal of Dentistry, 37(6), 413–423. https://doi.org/10.1016/j.jdent.2009.02.003
Pham, D. T., Saelim, N., & Tiyaboonchai, W. (2018). Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure. Journal of Materials Science, 53(20), 14087–14103. https://doi.org/10.1007/s10853-018-2635-3
Pham, D. T., Saelim, N., & Tiyaboonchai, W. (2019). Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids and Surfaces. B, Biointerfaces, 181, 705–713. https://doi.org/10.1016/j.colsurfb.2019.06.011
Pradhan, D., Panda, P. K., & Tripathy, G. (2009). Wound healing activity of aqueous and methanolic bark extracts of vernonia arborea Buch.-Ham. in wistar rats. Natural Product Radiance, 8(1), 6–11.
Saenz, C., Tapia, S., Chavez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114, 616–622. https://doi.org/10.1016/j.foodchem.2008.09.095
Tailor, C. S., & Goyal, A. (2014). Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves. American Journal of Ethnomedicine, 1, 244–249.
Thaman, R. R. (1999). Wedelia trilobata: Daisy invader of the Pacific Islands - IAS Technical Report 99/2. Garden, 10.
Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release, 190, 381–397. https://doi.org/10.1016/j.jconrel.2014.05.059