Hoàng Quang Bình * , Chế Mỹ Linh , Trịnh Ngọc Thảo Ngân Lê Trung Thiên

* Tác giả liên hệ (qbinh93@gmail.com)

Abstract

Microencapsulation is an effective method to preserve bioactive compounds. Through the encapsulation mechanism of polymers derived from proteins, polysaccharides; natural compounds (polyphenols, carotenoids,...), as well as beneficial microorganisms (yeast, probiotics), are protected against adverse environmental conditions. The application of microencapsulated beads in foodstuff prolongs the shelf life of products, improve the antioxidant capacity and enhance the survival of probiotics.

Keywords: Application, bioactive compound, coacervation, foodstuff, preservation

Tóm tắt

Vi bao là phương pháp hiệu quả giúp bảo quản các chất sinh học. Thông qua cơ chế bao gói của các polymer có nguồn gốc từ protein, polysaccharide, các hợp chất tự nhiên (polyphenol, carotenoid, …) cũng như vi sinh vật có lợi (nấm men, probiotic) giúp bảo vệ trong các điều kiện bất lợi của môi trường. Ứng dụng các hạt vi bao trong chế biến thực phẩm giúp sản phẩm kéo dài thời gian sử dụng, nâng cao khả năng kháng oxy hóa và cải thiện khả năng sống sót của probiotic.

Từ khóa: Hợp chất sinh học, thực phẩm, ứng dụng, vi bao

Article Details

Tài liệu tham khảo

Alikhani‐Koupaei, M., Mazlumzadeh, M., Sharifani, M., & Adibian, M. (2014). Enhancing stability of essential oils by microencapsulation for preservation of button mushroom during postharvest. Food Science & Nutrition, 2(5), 526-533. Doi: 10.1002/fsn3.129

Barrow, C., Wang, B., Adhikari, B., Liu, & H. (2013). Spray drying and encapsulation of omega-3 oils. In: Jacobsen, C., Nielsen, N.S., Horn, A.F., Sørensen, A.-D.M. (Eds.). Food Enrichment with Omega-3 Fatty Acid (194–219). Woodhead Publishing Limited, Cambridge, UK. Doi.org/10.1533/9780857098863.2.194

Bastos, L. P. H., Vicente, J., dos Santos, C. H. C., de Carvalho, M. G., & Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102, 105605. Doi.org/10.1016/j.foodhyd.2019.105605

da Silva Soares, B., Siqueira, R. P., de Carvalho, M. G., Vicente, J., & Garcia-Rojas, E. E. (2019). Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, 298 (15), 125045. Doi: 10.1016/j.foodchem.2019.125045.

de Oliveira, W. Q., Wurlitzer, N. J., de Oliveira Araújo, A. W., Comunian, T. A., Bastos, M. D. S. R., de Oliveira, A. L., Magalhãesc, H. C. R., Ribeiroe, H. L., de Figueiredoa, R. W., de Sousaa, P. H. M.,& de Sousa, P. H. M. (2020). Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Research International, 131, 109047. Doi: 10.1016/j.foodres.2020.109047

Deng, J., Yang, H., Capanoglu, E., Cao, H., & Xiao, J. (2018). Technological aspects and stability of polyphenols. In Galanakis C. (Eds.). Polyphenols: Properties, recovery, and applications (295-323). Woodhead Publishing. Doi.org/10.1016/B978-0-12-813572-3.00009-9

Dima, C., Cotârlet, M., Alexe, P., & Dima, S. (2014). Microencapsulation of essential oil of pimento (Pimenta dioica (L) Merr.) by chitosan/k-carrageenan complex coacervation method. Innovative Food Science & Emerging Technologies, 22, 203-211. Doi: 10.1016/j.ifset.2013.12.020.

Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, I., Komes, D., Bugarski, B., & Nedović, V. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452-490. Doi: 10.1007/s12393-014-9106-7

Girardi, N. S., García, D., Passone, M. A., Nesci, A., & Etcheverry, M. (2017). Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration & Biodegradation, 116, 227-233. Doi: 10.1016/j.ibiod.2016.11.003

Girardi, N. S., Passone, M. A., García, D., Nesci, A., & Etcheverry, M. (2018). Microencapsulation of Peumus boldus essential oil and its impact on peanut seed quality preservation. Industrial Crops and Products, 114, 108-114. Doi: 10.1016/j.indcrop.2018.01.036

Gonçalves, N. D., de Lima Pena, F., Sartoratto, A., Derlamelina, C., Duarte, M. C. T., Antunes, A. E. C., & Prata, A. S. (2017). Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Research International, 96, 154-160. Doi: 10.1016/j.foodres.2017.03.006

Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 15(7-8), 330-347. Doi: 10.1016/j.tifs.2003.10.005.

Hương N. T., Ánh D. H., Vân Ng. T., Việt G. T., Bách Ng. X., Bích T. N. (2012). Nghiện cứu cố định tế bào nấm men ứng dụng trong lên men cồn từ rỉ đường. Tạp chí Khoa học và Công nghệ, 50(6), 621-631.

Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2016). Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules, 87, 101-113. Doi: 10.1016/j.ijbiomac.2016.01.117

Karimi Sani, I., Alizadeh Khaledabad, M., Pirsa, S., & Moghaddas Kia, E. (2020). Physico‐chemical, organoleptic, antioxidative and release characteristics of flavoured yoghurt enriched with microencapsulated Melissa officinalis essential oil. International Journal of Dairy Technology, 73(3), 542-551. Doi: 10.1111/1471-0307.12691

Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21(4), 377-397. Doi: 10.1016/j.fm.2003.10.005.

Mirzaei, H., Pourjafar, H., & Homayouni, A. (2012). Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chemistry, 132(4), 1966-1970. Doi: 10.1016/j.foodchem.2011.12.033

Narin, C., Ertugrul, U., Tas, O., Sahin, S., & Oztop, M. H. (2020). Encapsulation of pea protein in an alginate matrix by cold set gelation method and use of the capsules in fruit juices. Journal of Food Science, 85(10), 3423-3431. Doi: 10.1111/1750-3841.15433

Nguyen, D. N., Ton, N. M. N., & Le, V. V. M. (2009). Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ‘adsorption-incubation’method. International Food Research Journal, 16(1), 59-64.

Oliveira, F. M., Oliveira, R. M., Buchweitz, L. T. G., Pereira, J. R., dos Santos Hackbart, H. C., Nalério, É. S., Borges, C. D., & Zambiazi, R. C. (2022). Encapsulation of olive leaf extract (Olea europaea L.) in gelatin/tragacanth gum by complex coacervation for application in sheep meat hamburger. Food Control, 131, 108426. Doi: 10.1016/j.foodcont.2021.108426

Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5), 270–278. Doi.org/10.4161/oxim.2.5.9498

Pankasemsuk, T., Apichartsrangkoon, A., Worametrachanon, S., & Techarang, J. (2016). Encapsulation of Lactobacillus casei 01 by alginate along with hi-maize starch for exposure to a simulated gut model. Food Bioscience, 16, 32-36. Doi: 10.1016/j.fbio.2016.07.001

Ribeiro, A., Caleja, C., Barros, L., Santos-Buelga, C., Barreiro, M. F., & Ferreira, I. C. (2016). Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food & Function, 7(5), 2185-2196. Doi: 10.1039/c6fo00270f

Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N., Grosso, C. R., & Gigante, M. L. (2014). Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International, 66, 424-431. Doi: 10.1016/j.foodres.2014.10.019

Rudke, A. R., Heleno, S. A., Fernandes, I. P., Prieto, M. A., Gonçalves, O. H., Rodrigues, A. E., Ferreira, I. C. F. R., & Barreiro, M. F. (2019). Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology. LWT, 103, 228-237. Doi: 10.1016/j.lwt.2019.01.018

Rutz, J. K., Borges, C. D., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Noreña, C. P. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59-66. Doi: 10.1016/j.foodchem.2016.09.194

Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1), 111-117. Doi: 10.1016/j.foodres.2009.09.010

Santos, M. G., Carpinteiro, D. A., Thomazini, M., Rocha-Selmi, G. A., da Cruz, A. G., Rodrigues, C. E., & Favaro-Trindade, C. S. (2014). Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Research International, 66, 454-462. Doi: 10.1016/j.foodres.2014.10.010

Stojanovic, R., Belscak‐Cvitanovic, A., Manojlovic, V., Komes, D., Nedovic, V., & Bugarski, B. (2012). Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. Journal of the Science of Food and Agriculture, 92(3), 685-696. Doi: 10.1002/jsfa.4632

imilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286. Doi: 10.1016/j.ijbiomac.2018.10.144.

Trang, H. T., & Thiên, L. T, (2018). Biến đổi hàm lượng polyphenol vi bao trong quá trình chế biến yaourt. Tạp chí Nông nghiệp và Phát triển, 17(1), 26-34.

Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358-365. Doi: /10.1016/j.foodchem.2014.02.135

Wang, B., Akanbi, T. O., Agyei, D., Holland, B. J., & Barrow, C. J. (2018). Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds. In Grumezescu, A. M., & Holban, A. M. (Eds.). Role of Materials Science in Food Bioengineering (235-261). Academic Press. Doi.org/10.1016/B978-0-12-811448-3.00007-3

Zhang, J., Jia, G., Wanbin, Z., Minghao, J., Wei, Y., Hao, J., Liu, X., Gan, Z., Sun, A., & Sun, A. (2021). Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocolloids, 112, 106280. Doi: 10.1016/j.foodhyd.2020.106280