Phạm Quốc Yên * Trần Quốc Tuấn

* Tác giả liên hệ (phqyen@gmail.com)

Abstract

Tebuconazole was dispersed in aqueous solutions of polyethylene glycol (PEG) and water in a desired mass fraction with a presence of dichloromethane (DCM). The mixture was then evaporated at 40oC under a pressure of 480 mbar to remove DCM and form nanotebuconazole. Nanotebuconazole particles size range is 27 – 35 nm with average size of 29 nm that was measured by dynamic light scattering (DLS) and the results showed that the ratio of PEG:H2O 4:1 is the most favorable for nanoparticle formation. In vitro tests using minimum inhibitory concentration (MIC) method illustrated that anti-fungal and anti-bacterial effectiveness of nanotebuconzole was demonstrated twofold increase compared with that of commercial tebuconazole for Ralstonia solanacearum, Fusarium ambrosium and Rhizoctonia solani and fourfold increase for Phytophthora capsici with MIC value are 50 ppm and 25 ppm respectively. Nanotebuconazole prepared in this study fully meets the standards of pesticides according to Vietnamese National Standards 9482:2012 (TCVN 9482:2012).

Keywords: nanotebuconazole, polyethylene glycol, Anti-fungal, pesticide, nanoemulsion

Tóm tắt

Tebuconazole được phân tán trong hỗn hợp polyethylene glycol (PEG) và nước theo một tỉ lệ xác định với sự hiện diện của dichloromethane (DCM). Hỗn hợp sau đó được làm bay hơi ở 40oC dưới áp suất 480 mbar để
loại bỏ DCM và hình thành nanotebuconazole. Kích thước hạt nanotebuconazole được xác định trong khoảng 27 – 35 nm với kích thước trung bình là 29 nm  bằng kĩ thuật tán xạ ánh sáng động (DLS) và kết quả nghiên cứu cho thấy tỉ lệ PEG:H2O 4:1 là thuận lợi nhất cho quá trình hình thành hạt nhũ nano. Các thử nghiệm in vitro bằng phương pháp MIC (minimum inhibitory concentration) chứng minh rằng dạng nanotebuconazole cho hiệu quả kháng khuẩn, kháng nấm mạnh gấp 2 lần dạng thương mại trên các chủng Ralstonia solanacearum, Fusarium ambrosium và Rhizoctonia solani và gấp 4 lần trên chủng Phytophthora capsici, với nồng độ ức chế tối thiểu lần lượt là 50 ppm và 25 ppm. Chế phẩm nanotebuconazole được đánh giá chất lượng đáp ứng đầy đủ tiêu chuẩn thuốc bảo vệ thực vật theo Tiêu chuẩn Việt Nam 9482:2012 (TCVN 9482:2012).

Từ khóa: Kháng nấm, nanotebuconazole, nhũ tương nano, polyethylene glycol, thuốc bảo vệ thực vật

Article Details

Tài liệu tham khảo

Adak, T., Kumar, J., Shakil, N. A., & Walia, S. (2012). Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B, 47(3), 217–25.

Dybas, R. A. (1989). Abamectin Use in Crop Protection. In C. C William (Eds). Ivermectin and Abamectin (pp 287–310). Sringer.

Isaac, I., Svetlana, K., & Rami, H. A. (2002). Emamectin, a novel insecticide for controlling field crop pests. Pest Management Science, 58(11), 1091–1095.

Jiang, L. C., Basri, M., Omar, D., Rahman, M. B. A., Salleh, A. B., Rahman, R. N. Z. R.A., & Selamat, A. (2012). Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA)formulations in controlling Eleusine indica (E-indica). Pesticide Biochemistry and Physiology, 102(1), 19–29.

Kah, M., Beulke, S., Tiede, K., & Hofmann, T. (2013). Nano-pesticides: state of knowledge, environmental fate and exposure modelling. Critical Reviews in Environmental Science and Technology, 43, 1823–1867.

Kaushik, P., Shakil, N. A., Kumar, J., Singh, M. K., & Yadav, S. K. (2013). Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. Journal of Environmental Science and Health, Part B, 48(8), 677–85.

Kumar, R. S. S., Shiny, P. J., Anjali, C. H., Jerobin, J., Goshen, K. M., & Magdassi, S. (2013). Distinctive effects of nano-sized permethrin in the environment. Environmental Science and Pollution Research, 20(4), 2593–602.

Loha, K. M., Shakil, N. A., Kumar, J., Singh, M. K., Adak, T.& Jain, S. (2011). Release kinetics of beta-cyfluthrin from its encapsulated formulations in water Journal of Environmental Science and Health, Part B, 46(3), 201–6.

Loha, K. M., Shakil, N. A., Kumar, J., Singh, M., & Srivastava, C. (2012). Bio-efficacy evaluation of nanoformulations of beta-cyfluthrin against Callosobruchus maculatus (Coleoptera:
Bruchidae). Journal of Environmental Science and Health, Part B, 47(7), 687–91.

Nguyen, H. M., Hwang, I. C., Park, J. W., & Park, H. J. (2012). Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. Journal of Microencapsulation, 29(6), 596–604.

Pankaj Shakil, N. A., Kumar, J., Singh, M. K., & Singh, K. (2012). Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. Journal of Environmental Science and Health, Part B, 47(6), 520–8.

Roy, I., Thapa, M., & Goswami, A. (2018). Nanohexaconazole: synthesis, characterisation and efficacy of a novel fungicidal nanodispersion. IET Nanobiotechnology, 12(6), 684-688.

Sancholle, M., Weete, J., &  Montani, C. (1984).  Effect of triazoles on fungi I: Growth and cellular permeabilit. Pesticide Biochemistry and Physiology, 21(1), 31–44.

Sarkar, D. J., Kumar, J., Shakil, N. A., & Walia, S. (2012). Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. Journal of Environmental Science and Health, Part A, 47(11), 1701–1712.