Bùi Hoàng Đăng Long * , Phạm Quang Sin , Huỳnh Xuân Phong , Nguyễn Ngọc Thạnh Ngô Thị Phương Dung

* Tác giả liên hệ (bhdlong@ctu.edu.vn)

Abstract

Lactic acid fermentation can add value to molasse and reduce pollution. The objectives of this study were to select and analyze for the fermentation by seven strains of lactic acid bacteria (L7, L9, L11, L26, L30, L37 and the control strain of Lactobacillus thermotolerans) using sugarcane molasses, a low-cost material from Phung Hiep sugar factory. Among them, Lactobacillus casei L9 could ferment and create 10.20 g/L total acid content after 5 days which is higher than that of the control Lactobacillus thermotolerans (9.40 g/L after 7 days). The suitable conditions for lactic acid fermentation from molasses were determined at pH 6.0, 8% (w/v) total sugar, 107 cells/mL inoculum. In the suitable conditions, Lactobacillus casei L9 could create 18.30 g/L lactic acid after a 6-day fermentation.
Keywords: Thermotolerant, lactic acid bacteria, lactic acid fermentation, molasses, suitable conditions

Tóm tắt

Lên men acid lactic có khả năng tạo giá trị gia tăng cho rỉ đường và giải quyết ô nhiễm môi trường. Đề tài này được tiến hành với mục tiêu tuyển chọn và khảo sát quá trình lên men acid lactic từ rỉ đường, một nguồn phụ phẩm thu từ nhà máy đường Phụng Hiệp, sử dụng 7 chủng vi khuẩn lactic chịu nhiệt (L7, L9, L11, L26, L30, L37 và chủng đối chứng Lactobacillus thermotolerans). Trong đó, Lactobacillus casei L9 có khả năng lên men tốt nhất ở 39ºC tạo hàm lượng acid lactic đạt 10,2 g/L sau 5 ngày lên men, cao hơn so với chủng đối chứng Lactobacillus thermotolerans (9,4 g/L sau 7 ngày). Điều kiện thích hợp cho lên men acid lactic từ rỉ đường là ở pH 6,0, sucrose 8% (w/v), mật số giống chủng 107 tế bào/mL. Ở điều kiện thích hợp, Lactobacillus casei L9 có khả năng chuyển hoá tạo 18,30 g/L acid lactic sau 6 ngày lên men.
Từ khóa: Chịu nhiệt, điều kiện thích hợp, lên men lactic, rỉ đường, vi khuẩn lactic

Article Details

Tài liệu tham khảo

Bogaert, J.C. and Coszach, P., 2000. Poly (lactic acids): a potential solution to plastic waste dilemma. macromolecule symposium. 153: 287-303.

Chen, M.M., Liu, Q.H., Xin, G.R. and Zhang, J.G., 2013. Characteristics of lactic acid bacteria isolates and their inoculating effect on the silage fermentation at high temperature. Letters in Applied Microbiology, 56(1): 71-78.

De Man, J.C., Rogosa, M. and Sharpe, M.E., 1960. A medium for the cultivation of Lactobacilli, Journal of Applied Bacteriology. 23(1): 130-135.

Elferink, S.J.W.H.O., Kroonerman, E., Ottschal, J.C., Spoelstra, S.F., Faber, F. and Driehuis, F., 2001. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchner. Applied and Environmental Microbiology. 67(1): 125–132.

Jiang Y., Marang, L., Kleerebezem, R., Muyzer, G. and van Loosdrecht, M.C.M., 2011. Polyhydroxybutyrateproduction from lactate using a mixed microbial culture, Biotechnology and Bioengineering. 108(9): 2022–2035.

Hofvendahl, K. and Hahn–Hägerdal, B., 2000. Factors affecting the fermentative lactic acid production from renewable resources 1, Enzyme and Microbial Technology. 26(2): 87-107.

Hood, S.K., and Zoitola, E.A., 1988. Effect of Low pH on the Ability of Lactobacillus acidophilus to Survive and Adhere to Human Intestinal Cells, Journal of Food Science. 53(5): 1514-1516.

Takara, K., Ushijima, K., Wada, K., Iwasaki, H., and Yamashita, M., 2007. Phenolic Compounds from Sugarcane Molasses Possessing Antibacterial Activity against Cariogenic Bacteria. Journal of Oleo Science. 56(11): 611-614.

Mazzoli, R., Bosco, F., Mizrahi, I., and Bayer, E.A., 2014. Towards lactic acid bacteria-based biorefineries. Biotechnology Advances. 32(7): 1216-1236.

Miehe, H., 1907. Die SelbsterhitzungDes Heus: Eine BiologischeStudie(in German). Jena: Gustav Fischer. 70.

Narayanan, N., Roychoudhury, P.K. and Srivastava, A., 2004. Isolation of adhmutant of Lactobacillus rhamnosusfor production of L(+) Lactic acid. Electronic Journal of Biotechnology. 15(7)-1.

Stern, R.M. and Frazier, W.C., 1941. Physiological Characteristics of Lactic Acid Bacteria Near the Maximum Growth Temperature: I. Growth and Acid Production 1, 2. Journal of Bacteriology, 42(4): 479-499.

Tayyba, G., Muhammad, I., Zahid, A., Aqil, T. et al., 2014. Recent trends in lactic acid biotechnology: A brief review on production to purification. Journal of Radiation Research and Applied Sciences. 7(2): 222-229.

Trinh, H.N.P., Long, B.H.D, Thanh, N.N., Phong, H.X., and Dung, N.T.P., 2018. Characterization of newly isolated thermotolerant lactic acid bacteria and lactic acid production at high temperature. International Food Research Journal. 25(2): 523-526.

Wardani, S.K, Cahyanto, M.N., Rahayu, E.S., and Utami, T., 2017. The effect of inoculum size and incubation temperature on cell growth, acid production and curd formation during milk fermentation by Lactobacillus plantarum Dad 13. International Food Research Journal. 24(3): 921-926.

Wee, Y.J, Kim, J.N, Yun, J.S., and Ryu, H.W., 2004. Utilization of sugar molasses for economical L (+)-lactic acid production by batch fermentation of Enterococcus faecalis, Enzyme and Microbial Technology. 35(6): 568-573.

Wu, C., Zhang, J., Wang, M., and Du, G., 2012. Lactobacillus caseicombats acid stress by maintaining cell membrane functionality. Journal of Industrial Microbiology & Biotechnology. 39(7): 1031-1039.