Huỳnh Xuân Phong * , Bùi Hoàng Đăng Long , Pornthap Thanonkeo , Mamoru Yamada , Le Phan Dinh Qui , Danh Minh Lợi , Nguyễn Ngọc Thạnh Ngô Thị Phương Dung

* Tác giả liên hệ (hxphong@ctu.edu.vn)

Abstract

The objectives of this study were to select and to identify thermotolerant yeasts for their application in pineapple fermentation at high temperature, and to study the optimum conditions for pineapple wine production. Seven isolates of thermotolerant yeasts (Y8, Y32, Y34, Y54, Y80, and Y81) were selected based on their high fermentative capacity with the ethanol content produced ranging from 4.17% to 7.45% (v/v) at 37°C. The isolate Y8 was a target selected yeast strain as having the highest ethanol contents at 37oC and 40oC of 7.45% (v/v) and 4.18% (v/v), respectively. The strains of Y8, Y32, Y34, Y54, Y80, and Y81 were identified as Saccharomyces cerevisiae and YVN7 was recognized as Candida glabrata. The optimum fermentation conditions for pineapple wine production by S. cerevisiae Y8 at 37oC were as follows: 5 days of fermentation, 18.6°Brix of initial sugar and yeast inoculum density of 107cells/mL, with ethanol content of 10.03% (v/v) and fermentative yield of 80.85% were achieved.
Keywords: Ethanol fermentation, pineapple, pineapple wine, Saccharomyces cerevisiae, thermotolerant yeast

Tóm tắt

Mục tiêu của nghiên cứu là tuyển chọn và định danh các dòng nấm men có khả năng chịu nhiệt, chịu cồn và khảo sát các điều kiện lên men rượu vang khóm. Kết quả đã tuyển chọn được 7/23 dòng nấm men (Y8, Y32, YVN7, Y81, Y34, Y54 và Y80) có khả năng lên men tốt từ dịch khóm ở 37oC, hàm lượng ethanol sinh ra trong khoảng 4,17-7,45% (v/v). Bảy dòng này được định danh thuộc loài Saccharomyces cerevisiae (Y8, Y32, Y34, Y54, Y80 và Y81) và loài Candida glabrata (YVN7). Dòng nấm men S. cerevisiae Y8 được tuyển chọn do có khả năng lên men tốt nhất, với lượng ethanol sinh ra cao nhất ở 37oC và 40oC lần lượt là 7,45% (v/v) và 4,18 % (v/v). Điều kiện lên men rượu vang khóm thích hợp của dòng S. cerevisiae Y8 ở 37oC với thời gian lên men 5 ngày, hàm lượng đường 18,6°Brix và mật số nấm men 107 tế bào/mL, hàm lượng ethanol đạt 10,03% (v/v) với hiệu suất lên men đạt 80,85%.
Từ khóa: Khóm, lên men ethanol, nấm men chịu nhiệt, rượu vang khóm, S. cererevisiae

Article Details

Tài liệu tham khảo

Abdel-Banat, B.M., Hoshida, H., Ano, A., Nonklang, S., Akada, R., 2010. High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology. 85(4): 861-867.

Akubor, P.I., 1996. The suitability of African bush mango juice for wine production. Plant Foods and Human Nutrition. 49(3): 213-219.

Alain, K., A.N. Georges, Aka, Y., 1987. Ethanol production from pineapple juice in Côta d’Ivoire with preselected yeast strains. Journal of Fermentation Technology. 65(4): 475-481.

Banat, I.M., P. Nigam and R. Marchat, 1992. Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World Journal of Microbiology and Biotechnology. 8(3): 259-263.

Bennett, C., 1971. Spectrophotometric acid dichromate method for the determination of ethyl alcohol. The American Journal of Medical Technology. 37(6): 217.

FAO Regional Office for Asia and the Pacific, 2014. FAO Statistical Yearbook 2014: Asia and the Pacific Food and Agriculture. Bangkok, Thailand.

Fonseca, Á. and Inácio J., 2006. Phylloplane yeasts. In: G. Péter and C.A. Rosa (Editors). Biodiversity and Ecophysiology of Yeasts. Springer. Berlin, pp.263-301.

Heard, G.M and G.H Fleet, 1988. The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice. Journal of Applied Microbiology. 65(1): 23-28.

Isaac, M.H., and B.J. Soden, 2000. Water vapor feedback and global warming. Annual Review of Energy the Environment. 25: 441-475.

Keating, J.D., Panganiban, C., and Mansfield, S.D., 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering. 93(6): 1196-1206.

Lertwattanasakul, N., Kosaka, T., Hosoyama, A., Suzuki, Y., Rodrussamee, N., Matsutani, M., Yamada, M., 2015. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnology for Biofuels. 8: 47.

Limtong, S., Sringiew, C., Yongmanitchai, W., 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresources Technology. 98(17): 3367-3374.

Nevoigt E., 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews. 72(3): 379-412.

Ngo Thi Phuong Dung, Huynh Xuan Phong, Pornthap Thanonkeo, Preekamol. Klanrit, Toshiharu Yakushi, Kazunobu Matsushita, Mamoru Yamada (2015). The diversified collection of thermotolerant microorganisms isolated in Vietnam for fermentation of ethanol, acetic acid and lactic acid. In Proceedings of International Symposium on Microbial Research and Biotechnology for Biomass Utilization (p.27). JR Hakata City, Fukuoka, Japan.

Ngô Thị Phương Dung, Lý Huỳnh Liên Hương, Huỳnh Xuân Phong, 2011. Phân lập, tuyển chọn nấm men và xác định điều kiện ảnh hưởng quy trình lên men rượu vang dưa hấu. Tạp chí Khoa học Đại học Cần Thơ. 18b: 137-146.

Nguyễn Đình Thưởng và Nguyễn Thanh Hằng, 2005. Công nghệ sản xuất và kiểm tra cồn etylic. NXB Khoa học Kỹ thuật. Hà Nội, Việt Nam.

Nguyễn Xuân Ra, 2014. Tìm hiểu rượu vang và nho. Nhà xuất bản thông tin và truyền thông. Hà Nội, Việt Nam.

Nonklang S., B.M.A. Abdel-Banat, K. Cha-aim, N. Moonjai, H. Hoshida, S. Limtong, M. Yamada and R. Akada. 2008. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Applied and Environmental Microbiology. 74(24): 7514-7521.

O’Donnell, K., 1993. Fusarium and its near relatives. In D. R. Reynolds & J. W. Taylor (Eds.), The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (225-233). Wallingford: CAB International.

Phong, H.X., Giang, N.T.C., Nitiyon, S., Yamada, M., Thanonkeo, P. and Dung, N.T.P., 2016. Ethanol production from molasses at high temperature by thermotolerant yeasts isolated from cocoa. Can Tho University Journal of Science. 3: 21-26.

Radecka, D., Mukherjee, V., Mateo, R. Q., Stojiljkovic, M., Foulquié-Moreno, M. R., & Thevelein, J. M., 2015. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Research. 15(6), fov053. http://doi.org/10.1093/femsyr/fov053.

Rodrussamee, N., Lertwattanasakul, N., Hirata, K., Suprayogi, Limtong, S., Kosaka, T., & Yamada, M., 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Applied Microbiology and Biotechnology. 90(4): 1573-1586.

Roehr, M. 2001. The Biotechnology of Ethanol: Classical and FutureApplications. Wiley-VCH Verlag GmbH. Weinheim, 232 pages.

Santoshkumar, Pati, and Patil, A.B., 2006. Isolation and Characterization of wine yeast from pineaapple fruits. Karnataka Journal of Agricultural Science. 19(3): 558-561.

Selli, S., Cabaroglu, T. & Canbas, A. 2003. Flavour components of orange wine made from a Turkish cv. Kozan. International Journal of Food Science and Technology. 38(5): 587-592.

Tahir, A., M. Aftab and Farasat, T., 2010. Effect of cultural conditions on ethanol production by locally isolated Saccharomyces cerevisiae bio-07. Journal of Applied Pharmaceutical. 3(2): 72-78.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 30(12): 2725-2729.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G., 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 25(24): 4876-4882.