Đinh Ngọc Quý * , Lê Vĩnh Hòa Nguyễn Duy Cường

* Tác giả liên hệ (dnquy@ctu.edu.vn)

Abstract

We give a generalization of Borwein-Preiss smooth variational principle for set-valued mappings, replacing the distance and the norm by a gauge-type lower semi-continuous function. For set-valued mappings, we consider a kind of minimizers which is different from the Pareto one.
Keywords: s variational principle, Borwein-Preiss smooth variational principle, set perturbations, Pareto minimizers, Kuroiwa’s minimizers

Tóm tắt

Chúng tôi đưa ra một dạng tổng quát của nguyên lý biến phân trơn Borwein-Priess cho ánh xạ đa trị, thay thế hàm khoảng cách và chuẩn bởi hàm cỡ “gauge-type” nửa liên tục dưới. Nghiên cứu ánh xạ đa trị, chúng tôi quan tâm đến dạng nghiệm cực tiểu mới, khác so với dạng nghiệm Pareto thường nghiên cứu.
Từ khóa: Nguyên lý biến phân Ekeland, nguyên lý biến phân trơn Borwein-Priess, nhiễu tập, cực tiểu Pareto, cực tiểu Kuroiwa

Article Details

Tài liệu tham khảo

Borwein, J.M. and D. Preiss, 1987. A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Transactions of the American Mathematical Society. 303: 517-527.

Borwein, J.M. and Q.J. Zhu, 2005. Techniques of Variational Analysis. Canadian Mathemtical Society Series, Springer. 353 pp.

Deville, R., G. Godefroy and V. Zizler, 1993. A smooth variational principle with applicatons to Hamilton–Jacobi equations in infinite dimentions. Journal of Functional Analysis. 111: 197-212.

Ha, T.X.D, 2005. Some variants of Ekeland’s variational principle for a set-valued map. Journal of Optimization Theory and Applications. 124: 187-206.

Kada, O., T. Suzuki and W. Takahashi, 1996. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Mathematical Japonica. 44: 381-391.

Khanh, P.Q. and D.N. Quy, 2011. On generalized Ekeland’s variational principle and equivalent formulations for set-values mappings, Journal of Global Optimization. 4: 381-396.

Khanh, P.Q. and D.N. Quy, 2013. Versions of Ekeland’s variational principle involving set perturbations. Journal of Global Optimization. 57: 951-968.

Kuroiwa, D., 2001. On set-valued optimization. Nonlinear Analysis. 47: 1395-400.

Li, Y.X. and S.Z Shi, 2000. A generalization of Ekeland’s <Object: word/embeddings/oleObject592.bin>-variational principle and of its Borwein-Preiss smooth version. Journal of Mathematical Analysis and Applications. 246: 308-319.

Stegall C., 1978. Optimization of functions on certain subsets of Banach spaces. Mathematische Annalen. 236: 171-176.