Một dạng tổng quát của nguyên lý biến phân trơn Borwein-Preiss cho ánh xạ đa trị
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Borwein, J.M. and D. Preiss, 1987. A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Transactions of the American Mathematical Society. 303: 517-527.
Borwein, J.M. and Q.J. Zhu, 2005. Techniques of Variational Analysis. Canadian Mathemtical Society Series, Springer. 353 pp.
Deville, R., G. Godefroy and V. Zizler, 1993. A smooth variational principle with applicatons to Hamilton–Jacobi equations in infinite dimentions. Journal of Functional Analysis. 111: 197-212.
Ha, T.X.D, 2005. Some variants of Ekeland’s variational principle for a set-valued map. Journal of Optimization Theory and Applications. 124: 187-206.
Kada, O., T. Suzuki and W. Takahashi, 1996. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Mathematical Japonica. 44: 381-391.
Khanh, P.Q. and D.N. Quy, 2011. On generalized Ekeland’s variational principle and equivalent formulations for set-values mappings, Journal of Global Optimization. 4: 381-396.
Khanh, P.Q. and D.N. Quy, 2013. Versions of Ekeland’s variational principle involving set perturbations. Journal of Global Optimization. 57: 951-968.
Kuroiwa, D., 2001. On set-valued optimization. Nonlinear Analysis. 47: 1395-400.
Li, Y.X. and S.Z Shi, 2000. A generalization of Ekeland’s <Object: word/embeddings/oleObject592.bin>-variational principle and of its Borwein-Preiss smooth version. Journal of Mathematical Analysis and Applications. 246: 308-319.
Stegall C., 1978. Optimization of functions on certain subsets of Banach spaces. Mathematische Annalen. 236: 171-176.