ĐIỀU KHIỂN ROBOT PIONEER P3-DX BÁM SÁT ĐỐI TƯỢNG
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
A. Treptow, A. Masselli and A. Zell (2003). Real-Time Object Tracking for Soccer-Robots without Color Information. University of Tuebingen Department of Computer Science, Gemany.
A. WhitBrook (2010). Programming Mobile Robot with Aria and Player. Springer.
A. Mittal and M. Paragios (2004). Motion Based Background Subtraction using Adaptive Kernel Density Estimation.pp. 302-309.
Artner (2008). A Comparison of Mean Shift Tracking Methods.Digital Media, Upper Austria University of Applied Sciences.
C. Zhang, Y. Qiao, E. Fallon, and C. Xu (2009). An improved camshift algorithm for target tracking in video surveillance. In Proceedings of 9th. IT and T Conference, number 12.
D. Beymer and Konolige K (2001). Tracking people from a mobile platform. In IJCAI-2001 Workshop on Reasoning with Uncertainty in Robotics.
D. Comaniciu and V. Ramesh (2009). “Mean Shift and Optimal Prediction for Efficient Object Tracking,”Proc. Int'l Conf. Image Processing, vol. III, pp. 70-73, 2000. 20 Sept.
D. Comaniciu, Dorin, Peter Meer (2002). "Mean Shift: A Robust Approach Toward Feature Space Analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence.
D. Kortenkamp, E. Huber, and R. P. Bonasso (1996). Recognizing and interpreting gestures on a mobile robot. InProc. of the American Conference on Artificial Intelligence.
G. Bradski and A. Kaehler (2012). Learning OpenCV. O'Reilly Media.
Gary R. Bradski (1998). Computer Vision Face Tracking For Use in a Perceptual User Interface. Microcomputer Reseacher Lab, Santa Clara, CA, Intel Corporation.
I.J. Cox and S.L (1996). Hingorani. An efficient implementation of reids multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Transactions on PAMI, 18(2):138–150.
J. MacCormick and A. Blake (1999). A probabilistic exclusion principle for track-ing multiple objects. InProc. of 7th International Conference on Computer Vision (ICCV), pages 572–587.
K. Fukunaga and L.D. Hostetler (1975). The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans. Information Theory, vol. 21, pp. 32-40.
M. Mercimek, K. Gulez and T.V. Mumcu (2005). Real object recognition using moment invariants. Yildiz Technical University, Electrical-Electronics Faculty, Electrical Engineering Department, 34349 Besiktas-Istanbul, Turkey.
P. Viola and M. Jones (2001). Robust Real-time Object Detection. International Journal of Computer Vision.
Phạm Hồng Ngự (2009). Nhận dạng đối tượng sử dụng thuật toán Adaboost. Luận văn Thạc sỹ. Đại học Huế.
R. Lienhart, J. Maydt (2002). An Extended Set of Haar-like Features for Rapid Object Detection. Intel Labs, Intel Corporation, Santa Clara, CA 95052, USA.
Y. Freund, and R. Shapire (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Proceedings of the Second European Conference on Computational Learning Theory. pp. 23-37.
Y.Cheng (1995). Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8. August.
PHỤ LỤC
Robot di chuyển thẳng tới123
54
13245
Hình 10:Robot di chuyển thẳng tới
Robot di chuyển rẽ trái132
45
654321
Hình 12:Robot di chuyển rẽ trái
Robot di chuyển rẽ phải
13245
13245
Hình 11:Robot di chuyển rẽ phải
Robot di chuyển lùi132
54
45
Hình 13:Robot di chuyển lùi