KHẢO SÁT KHẢ NĂNG ĐIỀU TRỊ BỆNH TIỂU ĐƯỜNG CỦA CAO CHIẾT LÁ ỔI (PSIDIUM GUAJAVA L.)
Abstract
Postprandial hyperglycemia is an early effect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-amylase and α-glucosidase, the key enzyme for starch digestion and further glucose absorption. This study evaluated the anti-diabetic potential of guava leaf by determining their anti-postprandial hyperglycemic activities in vivo and in vitro. Ethanolic extract of the leaves of Psidium guajava was orally tested at doses of 400 mg/kg body weight for evaluating the hypoglycemic effect in nomal and alloxan monohydrate induced diabetic mice. The results proved that diabetic mice treated with this plant extracts showed significant (P<0.05) reduction of the blood glucose to levels comparable to that of the non-diabetic control and those treated with gliclazide (standard drug). Similarly, there were significant changes in body weight in ethanolic extract treated diabetic animals, when compared with the diabetic control and normal animals. Finally, ethanolic plant extracts in this study showed no acute toxicity on healthy. The inhibition of α-amylase and α-glucosidase activity of aqueous, methanol and butanol extracts were carried out in vitro. The result demonstrated that these guava leaf extracts exerted significant inhibition and specific on intestinal α-amylase and α-glucosidases activities. In conclusion, this study proved that guava extracts selectively and significantly inhibits intestinal α-amylase and α-glucosidase and suppresses postprandial hyperglycemia in diabetic mice. The anti-postprandial hyperglycemic activities demonstrated on the tested guava extract therefore suggest a potential for utilizing guava leaf-derived bioactive compounds in management of diabetes.
Tóm tắt
Article Details
Tài liệu tham khảo
Akkarachiyasit S, Charoenlertkul P, Yibchok-anun S and Adisakwattana S. 2010. Inhibitory activities of Cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int. J. Mol. Sci, 11: 3387-3396.
Deguchi Y, Osada K, Uchida K, Kimura H, Yoshikawa M, Kudo T, Yasui H and Watanuki M. 1998. Effect of extract of guava leaves on the development of diabetes in the db/db mouse and on the postprandial blood glucose of human subject. Nippon Nogeikagaku Kaishi. 72:923-932.
Hogan S, Zhang L, Li J, Sun S, Canning C, Zhou K. 2010. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase. Nutrition & Metabolism. 7:71-79.
Huang CS, Yin MC, Chiu LC, 2011. Antihyperglycemic and antioxidative potential of Psidium guajava fruit in strepzotocin induced diabetic rats. 49 (9): 2189-2195.
Kim SH, Jo SH, Kwon YI and Hwang JK. 2011. Effect of onion (Allium cepa L.) extract administration on intestinal α-glucosiadse activities and spokes in postprandial blood glucose levels in SD rat model. Int.J.Mol. Sci. 12: 3757-3769.
Mukhtar HM, Ansari SH, Bhat ZA, Naved T, Singh P. 2006. Antidiabetic activity of ethanol extract obtained from the stem bark of Psidium guajava (Myrtaceae). Pharmazie 61(8): 725-727.
Nathan DM. 2006. Management of hyperglycemia in type 2 diabetes. Diabetes Care. 29: 1963-1972.
Oh, W.K, C.H. Lee, M.S. Lee, E.Y. Bae, C.B. Sohn, H. Oh, B.Y. Kim and J.S. Ahn. 2007. Antidiabeter effects of extracts from Psidium guajava. J Ethnopharmacology, 96, 411-415.
Ponnusamy S, Ravindran R, Zinjarde S, Bhargava S and Kumar AR. 2011. Evaluaion of traditional Indian Antidiabetic medecinal plants for human pancreatic amylase inhibitiory effect in vitro. Evidence-Based Complementary and Alternative Medicine. ID 515647.
Rai PK, Jaiswal D, Mehta S, Watal G. 2009. Anti-hyperglycaemic potential of Psidium guajava raw fruit peel. Indian J Med Res. 129(5): 561-565.
Roman-Ramos R, Flores-saenz JL, Alarcon-Aguilar FJ. 1995. Anti-hyperglycemic effect of some edible plants. J Ethanopharmacol 48(1):25-31.
Saijyo J, Suzuki Y, Okuno Y and Yamaki H. 2008. α-glucosidase inhibitor from Bergenia ligulata. Journal of Oleo Science. 57(8) 431-435.
Shen SC, Cheng FC, Wu NJ. 2008. Effect of guava (Psidium guajava Lnn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats. 2008. Phytother Res. 22(11): 1458-1464.
Soman S, Rauf AA, Indira M, Rajamanickam C, 2010. Antioxidant and antiglycative potential of ethyl acetate fraction of Psidium guajava leaf extract in streptozotocin-induced diabetic rats. Plant Foods Hum Nutr. 65 (4): 386-391.
Subramanian R, Zaini Asmawi M and Sadikun Amirin. 2008. In vitro α-glucosiadase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochimica Polonica. 55(2): 391-398.
Sudha P, Smita SZ, Shobha YB and Kumar AR. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. 2011. BMC Complementary & Alternative Medicine. 11: 5-14.
Wang B, Liu HC, Ju CY. 2005. Study on the hypoglycemic activity of different extracts of wild Psidium guajava leaves in Panzhihua Area. Sichuan Da Xue Xue Bao Yi Xue Ban. 36(9): 858-861.