Lâm Quốc Anh * , Trần Quốc Duy , Đặng Thị Mỹ Vân Nguyễn Hiếu Thảo

* Tác giả liên hệ (quocanh@ctu.edu.vn)

Abstract

We consider parametric vector equilibrium problem in metric spaces. Sufficent conditions for the Hửlder calm continuity of the solutions are established. We also study the Hửlder well-posedness for vector equilibrium problem.
Keywords: Equilibrium problem, Hölder calm continuity, Hölder well-posedness, Hölder continuity, monotone, strong Hölder monotone, quasimonotone

Tóm tắt

Chúng tôi xét bài toán cân bằng vectơ trong không gian metric. Thu được các điều kiện đủ cho sự liên tục Hửlder calm của nghiệm bài toán. Chúng tôi cũng nghiên cứu về tính đặt chỉnh Hửlder của bài toán cân bằng vectơ.
Từ khóa: Bài toán cân bằng, tính liên tục Hửlder calm, tính đặt chỉnh Hửlder, tính liên tục Hửlder, tính đơn điệu, tính đơn điệu Hửlder mạnh, tính tựa đơn điệu

Article Details

Tài liệu tham khảo

Ait Mansour, M. and Riahi, H., 2005. Sensitivity analysis for abstract equilibrium problems. J. Math. Anal. Appl. 306: 684-691.

Anh, L.Q. and Khanh, P.Q., 2006. On the Hölder continuity of solutions to multivalued vector equilibrium problems. J. Math. Anal. Appl. 321: 308-315.

Anh, L.Q. and Khanh, P.Q., 2007a. On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135: 271-284.

Anh, L.Q. and Khanh, P.Q., 2007b. Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces. J. Glob. Optim. 37: 449- 465.

Anh, L.Q. and Khanh, P.Q., 2008a. Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems. Numer. Funct. Anal. Optim. 29: 24-42.

Anh, L.Q. and Khanh, P.Q., 2008b. Various kinds of semicontinuity and solution sets of parametric multivalued symmetric vector quasiequilibrium problems. J. Glob. Optim. 41: 539-558.

Anh, L.Q. and Khanh, P.Q., 2009. Hölder continuity of the unique solution to quasiequilibrium problems in metric spaces. J. Optim. Theory Appl. 141: 37–54.

Ansari, Q.H. and Yao, J.C., 1999. An existence result for the generalized vector equilibrium problem. Appl. Math. Lett. 12: 53-56.

Bednarczuk, E., 2007. Stability analysis for parametric vector optimization problems. Warszawa, Poland.

Bianchi, M. and Pini, R., 2003. A note on stability for parametric equilibrium problems. Oper. Res. Lett. 31: 445-450.

Blum, E. and Oettli, W., 1994. From optimization and variational inequalities to equilibrium problems. Math. Student. 63: 123-145.

Chen, C.R., Li, S.J. and Teo, K.L., 2009. Solution semicontinuity of parametric generalized vector equilibrium problems. J. Glob. Optim. 45: 309-318.

Hai, N.X. and Khanh, P.Q., 2007a. Existence of solutions to general quasiequilibrium problems and applications. J. Optim. Theory Appl. 133: 317-327.

Hai, N.X. and Khanh, P.Q., 2007b. The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328: 1268-1277.

Hai, N.X. and Khanh, P.Q., 2007b. The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328: 1268-1277.

Huang, N.J., Li, S.J. and Thompson, H.B., 2006. Stability for parametric implicit vector equilibrium problems. Math. Comput. Modelling. 43: 1267-1274.

Li, X.B. and Li, S.J., 2010. Existences of solutions for generalized vector quasiequilibrium problems. Optim. Lett. 4: 17-28.

Li, X.B., Li, S.J. and Chen, C.R., 2010. Lipschitz continuity of an approximate solution mapping to equilibrium problems. Submitted.