Ảnh hưởng của điều kiện chần vi sóng đến hoạt độ enzyme peroxidase, màu sắc và các hợp chất sinh học trong rau má (Centella asiatica (L.) Urb.)
Abstract
The study aimed to determine the appropriate microwave blanching power and time to inactivate peroxidase (POD) enzyme, improve color, and preserve the bioactive compound content and antioxidant capacity of Centella asiatica. The leaves were blanched in a microwave oven under two investigated factors: power (200, 300, 400, 500, and 600 W) and time (0, 30, 45, 60, 75 and 90 seconds). Blanching at 500 W for 61 seconds resulted in more than 90% POD inactivation and significantly improved color parameters (L* = 55.73±0.69, a* = -4.74±0.13, and b* = 12.55±0.79). Under this condition, the contents of total polyphenols (TPC) (118.10±2.85 mg GAE/g), flavonoids (TFC) (110.10±0.44 mg QE/g), and DPPH radical scavenging capacity (10.20±0.61 mg TE/g) were well maintained. POD inactivation kinetics at 500 W followed a first-order model with a high coefficient of determination (R² = 0.9447), with kinetic parameters recorded as k = 0.0377 s⁻¹ and D = 60 seconds. Furthermore, a strong correlation was observed between POD activity and L*, a*, TPC, TFC, and DPPH values (r = -0.740; 0.851; -0.812; -0.656; and -0.939, respectively).
Tóm tắt
Công suất và thời gian chần vi sóng thích hợp nhằm vô hoạt enzyme peroxidase (POD), cải thiện màu sắc, duy trì hàm lượng hợp chất sinh học và khả năng kháng oxy hóa của rau má được xác định trong nghiên cứu. Rau má được chần trong lò vi sóng với hai nhân tố khảo sát là công suất (200, 300, 400, 500 và 600 W) và thời gian (0, 30, 45, 60, 75 và 90 giây). Chần rau má ở 500 W trong 60 giây có khả năng vô hoạt 90% POD và cải thiện tốt màu sắc (L* = 55,73±0,69, a* = -4,74±0,13 và b* = 12,55±0,79). Đồng thời, điều kiện này cũng duy trì tốt hàm lượng polyphenol (TPC) (118,10±2,85 mg GAE/g), flavonoid (TFC) (110,10±0,44 mg QE/g) và khả năng loại gốc tự do DPPH (10,20±0,61 mg TE/g). Động học vô hoạt POD ở công suất 500 W tuân theo mô hình bậc nhất với hệ số xác định cao (R2 = 0,9447), các thông số động học được ghi nhận lần lượt là k = 0,0377 s-1 và D = 61 giây. Ngoài ra, kết quả cũng ghi nhận sự tương quan cao giữa hoạt độ POD và giá trị L*, a*, TPC, TFC, khả năng loại gốc tự do DPPH (r = -0,740; 0,851; -0,812; -0,656 và -0,939, tương ứng).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Benlloch-Tinoco, M., Carranza-Concha, J., Camacho, M. M., & Martínez-Navarrete, N. (2015). Production of raisins and its impact on active compounds. In Processing and impact on active components in food (pp. 181-187). Academic Press.
https://doi.org/10.1016/B978-0-12-404699-3.00022-6
Chávez-Reyes, Y., Dorantes-Alvarez, L., Arrieta-Baez, D., Osorio-Esquivel, O., & Ortiz-Moreno, A. (2013). Polyphenol oxidase inactivation by microwave oven and its effect on phenolic profile of loquat (Eriobotrya japonica) fruit. Food and Nutrition Sciences, 4(9), 87-94. https://doi.org/10.4236/fns.2013.49a2012
De Ancos, B., Cano, M. P., Hernandez, A., & Monreal, M. (1999). Effects of microwave heating on pigment composition and colour of fruit purees. Journal of the Science of Food and Agriculture, 79(5), 663-670.
https://doi.org/10.1002/(SICI)1097-0010(199904)79:5<663::AID-JSFA232>3.0.CO;2-L
Demirdöven, A., & Baysal, T. (2008). Novel applications in vegetable and fruit processing industry. Turkey 10th food congress, 21-23 May, Erzurum, Turkey.
Erihemu, Wang, M., Zhang, F., Wang, D., Zhao, M., Cui, N., Gao, G., Guo, J., & Zhang, Q. (2021). Optimization of the process parameters of ultrasound on inhibition of polyphenol oxidase activity in whole potato tuber by response surface methodology. LWT-Food Science and Technology, 144, 111-232.
https://doi.org/10.1016/j.lwt.2021.111232
Guzik, P., Kulawik, P., Zając, M., & Migdał, W. (2022). Microwave applications in the food industry: An overview of recent developments. Critical Reviews in Food Science and Nutrition, 62(29), 7989-8008. https://doi.org/10.1080/10408398.2021.1922871
He, L., Liu, Y., Wu, X., & Liu, S. (2018). Effects of blanching on enzymatic browning and physicochemical properties of fresh-cut lotus root slices. Food Chemistry, 245, 660–666. https://doi.org/10.1016/j.foodchem.2017.11.087
Heras-Ramírez, M. E., Quintero-Ramos, A., Camacho-Dávila, A. A., Barnard, J., Talamás-Abbud, R., Torres-Muñoz, J. V., & Salas-Muñoz, E. (2011). Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food and Bioprocess Technology, 5(6), 2201-2210.
https://doi.org/10.1007/s11947-011-0583-x
Ismail, A., Marjan, Z. M., & Foong, C. W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food chemistry, 87(4), 581-586.
https://doi.org/10.1016/j.foodchem.2004.01.010
Kusznierewicz, B., Bartoszek, A., Wolska, L., Drzewiecki, J., Gorinstein, S., & Namieśnik, J. (2008). Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT-Food Science and Technology, 41(1), 1-9. https://doi.org/10.1016/j.lwt.2007.02.007
Liu, P., Mujumdar, A. S., Zhang, M., & Jiang, H. (2014). Comparison of Three Blanching Treatments on the Color and Anthocyanin Level of the Microwave-Assisted Spouted Bed Drying of Purple Flesh Sweet Potato. Drying Technology, 33(1), 66-71.
https://doi.org/10.1080 /07373937.2014.936558
Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Cruz-Castañón, J. R., & Chávez-González, M. L. (2017). Kinetic study of chlorophyll degradation in spinach (Spinacia oleracea L.) during hot air drying. Food Science and Technology International, 23(3), 209-216. https://doi.org/10.1177/1082013216670860
Mishra, V. K., & Gamage, T. V. (2007). Postharvest physiology of fruit and vegetables. In Handbook of food preservation (pp. 37-66). CRC press. https://doi.org/10.1201/9781420017373-8
Nicoli, M. C., Anese, M., & Parpinel, M. T. (1999). Influence of enzymatic browning and pH on the stability of fruit juices phenolic compounds. Journal of Agricultural and Food Chemistry, 47(3), 856–860. https://doi.org/10.1021/jf980836e
Nguyen, N. M. P., Le, T. T., Vissenaekens, H., Gonzales, G. B., Van Camp, J., Smagghe, G., & Raes, K. (2019). In vitro antioxidant activity and phenolic profiles of tropical fruit by-products. International Journal of Food Science and Technology, 54(4), 1169-1178. https://doi.org/10.1111/ijfs.14093
Paciulli, M., Rinaldi, M., Castaldo, D., & Limbo, S. (2016). Combined effect of blanching and packaging on the quality retention of fresh-cut cauliflower. Journal of Food Engineering, 180, 66-74.
https://doi.org/10.1016/j.jfoodeng.2016.03.013
Pour, A. K., Khorram, S., Ehsani, A., Ostadrahimi, A., & Ghasempour, Z. (2022). Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. Innovative Food Science & Emerging Technologies, 76, 102-945. https://doi.org/10.1016/j.ifset.2022.102945
Puupponen‐Pimiä, R., Häkkinen, S. T., Aarni, M., Suortti, T., Lampi, A. M., Eurola, M., & Oksman‐Caldentey, K. M. (2003). Blanching and long‐term freezing affect various bioactive compounds of vegetables in different ways. Journal of the Science of Food and Agriculture, 83(14), 1389-1402. https://doi.org/10.1002/jsfa.1589
Pham, D. C., Nguyen, H. C., Nguyen, T. H. L., Ho, H. L., Trinh, T. K., Riyaphan, J., & Weng, C. F. (2020). Optimization of ultrasound ‐ assisted extraction of flavonoids from Celastrus hindsii leaves using response surface methodology and evaluation of their antioxidant and antitumor activities. BioMed Research International, 1, 1-9. https://doi.org/10.1155/2020/3497107
Queiroz, C., Mendes, L. P., Fialho, E., & Olga, M. (2008). Polyphenol oxidase and peroxidase in foods: an overview. Journal of Food Quality, 31(6), 723–736.
https://doi.org/10.1111/j.1745-4557.2008.00222.x
Ramesh, M. N., Wolf, W., Tevini, D., & Bognár, A. (2002). Microwave blanching of vegetables. Journal of Food Science, 67(1), 390-398. https://doi.org/10.1111/j.1365-2621.2002.tb11416.x
Saini, R., Kaur, S., Aggarwal, P., & Dhiman, A. (2023). The influence of conventional and novel blanching methods on potato granules, phytochemicals, and thermal properties of colored varieties. Frontiers in Nutrition, 10, 117-141. https://doi.org/10.3389/fnut.2023.1178797
Sampedro, F., Phillips, J., & Fan, X. (2014). Use of response surface methodology to study the combined effects of UV-C and thermal processing on vegetable oxidative enzymes. LWT-Food Science and Technology, 55(1), 189-196. https://doi.org/10.1016/j.lwt.2013.07.010
Severini, C., Baiano, A., De Pilli, T., Romaniello, R., & Derossi, A. (2004). Microwave blanching of sliced potatoes dipped in saline solutions to prevent enzymatic browning. Journal of Food Biochemistry, 28, 75-89.
https://doi.org/10.1111/j.1745-4514.2004.tb00056.x
Soysal, Ç., & Söylemez, Z. (2005). Kinetics and inactivation of carrot peroxidase by heat treatment. Journal of Food Engineering, 68, 349-356. https://doi.org/10.1016/j.jfoodeng.2004.06.009
Turkmen, N., Sari, F., & Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food chemistry, 93(4), 713-718. https://doi.org/10.1016/j.foodchem.2004.12.038
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
Tripathi, G., Mishra, S., Upadhyay, P., Purohit, S., & Dubey, G. P. (2015). Ethnopharmacological importance of Centella asiatica with special reference to neuroprotective activity. Asian Journal of Pharmacology and Toxicology, 3(10), 49-53.
Trirattanapikul, W., & Phoungchandang, S. (2014). Microwave blanching and drying characteristics of Centella asiatica (L.) Urban leaves using tray and heat pump-assisted dehumidified drying. Journal of Food Science and Technology, 51(12), 3623-3634. https://doi.org/10.1007/s13197-012-0876-8
Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials - a review. Food and Bioprocess Technology, 3, 161-171. https://doi.org/10.1007/s11947-008-0136-0
Wang, J., Yang, X. H., Mujumdar, A. S., Wang, D., Zhao, J. H., Fang, X. M., Zhang, Q., Xie, L., Gao, Z. J., & Xiao, H.W. (2017). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT - Food Science and Technology, 77, 337-347. https://doi.org/10.1016/j.lwt.2016.11.070
Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food chemistry, 52(12), 4026-4037. https://doi.org/10.1021/jf049696w
Xiao, H. W., Pan, Z., Deng, L. Z., El-Mashad, H. M., Yang, X. H., Mujumdar, A. S., Gao, Z. J., & Zhang, Q. (2017). Recent developments and trends in thermal blanching–A comprehensive review. Information processing in Agriculture, 4(2), 101-127.
https://doi.org/10.1016/j.inpa.2017.02.001
Zhang, C., Lyu, X., Aadil, R. M., Tong, Y., Zhao, W., & Yang, R. (2023). Microwave heating instead of blanching to produce low-fat French fries. Innovative Food Science & Emerging Technologies, 84, 103-298. https://doi.org/10.1016/j.ifset.2023.103298
Zheng, H., & Lu, H. (2011). Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus (Asparagus officinalis L.) during water blanching. Food Chemistry, 128(4), 1087-1093.
https://doi.org/10.1016/j.foodchem.2011.03.130