Phan Vũ Hải * , Hoàng Thị Anh Phương , Trần Thị Na , Hoàng Chung Nguyễn Xuân Hoà

* Tác giả liên hệ (phanvuhai@hueuni.edu.vn)

Abstract

This study focused on optimizing the production process of probiotics from native Lactiplantibacillus for use in chicken farming, aiming to replace antibiotics. From 68 Lactiplantibacillus strains isolated from the chicken feces, five strains with the best antibacterial activity against Escherichia coli, Salmonella typhimurium FC13827 and Proteus mirabilis were selected and evaluated for safety. Four strains (L. plantarum 1582, L. plantarum JDM1, L. acidophilus NCFM, and L. agilis DSM 20509) were cultured in different media, of which the medium Mgl (containing glucose) and Mlac (containing skim milk powder) gave the best growth. Semi-industrial fermentation tests with these strains determined the optimal agitation speed to be 50 rpm, achieving a biomass of 0.6 g/L. The study provides important information on strain selection and optimization of culture conditions for native Lactiplantibacillus, aiming at reducing antibiotic use in chicken farming. However, further in vivo studies are needed to evaluate the efficacy of this product under real conditions.

Keywords: Antibiotic alternative, broiler, culture medium, Lactiplantibacillus, semi-industrial

Tóm tắt

Việc tối ưu hóa quy trình sản xuất chế phẩm sinh học từ Lactiplantibacillus bản địa ứng dụng trong chăn nuôi gà được nghiên cứu nhằm thay thế kháng sinh. Số lượng chủng Lactiplantibacillus được phân lập từ phân gà là 68, trong đó có 5 chủng kháng khuẩn tốt nhất chống lại vi khuẩn gây bệnh trên gà (Escherichia coli FG31-1, Salmonella typhimurium FC13827 và Proteus mirabilis MPE4069) đã được lựa chọn và đánh giá về tính an toàn. Bốn chủng (L. plantarum L3, L. plantarum L8, L. acidophilus L18, và L. agilis L27) được nuôi cấy trên các môi trường khác nhau, trong đó môi trường Mgl (chứa glucose) và Mlac (bột sữa gầy) cho sinh trưởng tốt nhất. Thử nghiệm lên men bán công nghiệp với các chủng này xác định tốc độ khuấy tối ưu là 50 vòng/phút, đạt sinh khối 0,6 g/L. Thông tin quan trọng về lựa chọn chủng và tối ưu hóa điều kiện nuôi cấy Lactiplantibacillus bản địa được cung cấp trung nghiên cứu, hướng đến hạn chế sử dụng kháng sinh trong chăn nuôi gà. Tuy nhiên, việc có thêm các nghiên cứu in vivo để đánh giá hiệu quả của sản phẩm này trong điều kiện thực tế là cần thiết.

Từ khóa: Bán công nghiệp, gà thịt, Lactiplantibacillus, môi trường nuôi cấy, thay thế kháng sinh

Article Details

Tài liệu tham khảo

Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O.P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiol Biotechnol, 100(3), 2939-2951. doi: htpps://doi.org/10.1007/s00253-016-7343-9

Argyri, A.A., Zoumpopoulou, G., Karatzas, K.A., Tsakalidou, E., Nychas, G.J., Panagou, E.Z., & Tassou, C.C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology, 33, 282-291. doi: https://doi.org/10.1016/j.fm.2012.10.005

Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M.C., Torriani, S., Ross, R.P., Hill, C., & O'Toole, P. W. (2019). Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appllied Environment Microbiology, 85(3), 121-129.doi:
https://doi.org/10.1128/AEM.01738-18

Chisti, Y. (2009). Shear Sensitivity. Encyclopedia of Industrial Biotechnology, 7, 1-40. doi: https://doi.org/10.1002/9780470054581.eib543

Doran, P. M. (2012). Bioprocess engineering principles: Second edition. Bioprocess Engineering Principles: Second Edition, 1-919.

Doron, S., & Snydman, D. R. (2015). Risk and safety of probiotics. Clinical Infectious Diseases, 60(2), 129-34. doi: https://doi.org/10.1093/cid/civ085

Elliott, S. J. Srinivas S., Albert M. J., Alam K., Robins-Browne R. M., Gunzburg S. T., Mee B. J., & Chang B. J. (1998). Characterization of the roles of hemolysin and other toxins in enteropathy caused by alpha-hemolytic Escherichia coli linked to diarrhea. Infectious Immunology, 66(5), 2040-51. doi:
https://doi.org/10.1128/IAI.66.5.2040-2051.1998.

Ganguly, N., Bhattacharya, S., Sesikeran, B., Nair, G., Ramakrishna, B., Sachdev, H., Batish, V., Kanagasabapathy, A., Muthuswamy, V., & Kathuria, S. (2011). ICMR-DBT guidelines for evaluation of probiotics in food. Indian Journal of Medical Research, 134, 22-25.

Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27, 153-176. doi: https://doi.org/10.1016/j.biotechadv.2008.10.006

Georgieva, R., Yocheva, L., Tserovska, L., Zhelezova, G., Stefanova, N., Atanasova, A., Danguleva, A., Ivanova, G., Karapetkov, N., Rumyan, N., & Karaivanova, E. (2015). Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnology Biotechnology Equipment, 29, 84-91. doi: https://doi.org/10.1080/13102818.2014.987450

Gueimonde, M., Sánchez, B., C, G. d. L. R.-G., & Margolles, A. (2013a). Antibiotic resistance in probiotic bacteria. Front Microbiology, 4, 202. doi: https://doi.org/10.3389/fmicb.2013.00202

Gueimonde, M., Sánchez, B., G. de los Reyes-Gavilán, C., & Margolles, A. (2013b). Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology, 4, 202. doi: http://dx.doi.org/10.3389/fmicb.2013.00202

Hertzberger, R., Arents, J., Dekker, H. L., Pridmore, R. D., Gysler, C., Kleerebezem, M., & de Mattos, M. J. (2014). H(2)O(2) production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase. Applied Environmental Microbiology, 80, 2229-39. doi:https://doi.org/10.1128/AEM.04272-13

Hung, A. T., Lin, S.-Y., Yang, T.-Y., Chou, C.-K., Liu, H.-C., Lu, J.-J., Wang, B., Chen, S.-Y., & Lien, T.-F. (2012). Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Animal Production Science, 52, 874-879. doi: http://dx.doi.org/10.1071/AN11332

Hwang, C.-F., Chen, J.-N., Huang, Y.-T., &Mao, Z.-Y. (2011). Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterol lowering ability. African Journal of Biotechnology, 10, 7010-7020. doi: https://doi.org/10.5897/AJB11.507

Kusnadi, J., & Afriyan, T. (2012). The growth of probiotic bacteria Lactobacillus plantarum and Lactobacillus acidophilus in skim milk and Taro (Colocasia esculenta L. Schott Var. Boring) flour composite medium. In "International Conference on Environmental and Biological Sciences 2012". https://doi.org/10.21776/ub.natural-b.2013.002.01.12

Lee, H., Gilliland, S., & Carter, S. (2001). Amylolytic Cultures of Lactobacillus acidophilus: Potential probiotics to improve dietary starch utilization. Journal of Food Science 66, 338-344. doi: https://doi.org/10.1111/j.1365-2621.2001.tb11343.x

Manzoor, A., Qazi, J. I., Haq, I. u., Mukhtar, H., & Rasool, A. (2017). Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low-cost media cultivation strategy. Journal of biological engineering, 11, 1-10. doi: https://doi.org/10.1186/s13036-017-0059-2

Medellin-Peña, M. J., Wang, H., Johnson, R., Anand, S., & Griffiths, M. W. (2007). Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Applied Environment Microbiology, 73, 4259-67. doi:https://doi.org/10.1128/AEM.00159-07

Mountzouris, K. C., Balaskas, C., Xanthakos, I., Tzivinikou, A., & Fegeros, K. (2009). Effects of a multi-species probiotic on biomarkers of competitive exclusion efficacy in broilers challenged with Salmonella enteritidis. British Poultry Science, 50, 467-78. doi: https://doi.org/10.1080/00071660903110935

Olson, D., & Aryana, K. (2012). Effect of prebiotics on Lactobacillus acidophilus growth and resulting pH changes in skim milk and a model peptone system. Journal of Microbial and Biochemical Technology, 4, 121. doi: https://doi.org/10.4172/1948-5948.1000081

Sebouai, M., Hamma-Faradji, S., Rezgui, A., Sobhi, W., Belaouni, H. A., Salah, R. B., Aksas, A., & Bendali, F. (2024). Encapsulated probiotic Lactiplantibacillus strains with promising applications as feed additives for broiler chickens. Comparative Immunology, Microbiology and Infectious Diseases, 1-10. doi:
https://doi.org/10.1016/j.cimid.2024.102213

Shokryazdan, P., Ramasamy, K., Chin, S., Alitheen, N., Liang, J., Faseleh jahromi, M., & Ho, Y. W. (2014). Isolation and characterization of Lactobacillus strains as potential probiotics for chickens. Pertanika Journal of Tropical Agricultural Science, 37, 141-157. doi: https://doi.org/10.1016/j.psj.2023.103311

Stanbury, P., Whitaker, A., & Hall, S. J. (2016). Principles of Fermentation Technology: Third Edition.

Stiles, J., Penkar, S., Plocková, M., Chumchalova, J., & Bullerman, L. (2002). Antifungal activity of sodium acetate and Lactobacillus rhamnosus. Journal of Food Protection, 65, 1188-1191. doi: https://doi.org/10.4315/0362-028x-65.7.1188

Taheri, A., Robinson, S. J., Parkin, I., & Gruber, M. Y. (2012). Revised selection criteria for candidate restriction enzymes in genome walking. PLoS One, 7, e35117. doi: https://doi.org/10.1371/journal.pone.0035117

Thomas, C. M., & Versalovic, J. (2010). Probiotics-host communication: Modulation of signaling pathways in the intestine. Gut Microbes, 1, 148-63. doi:
https://doi.org/10.4161/gmic.1.3.11712