Nguyễn Ngọc Trang Thùy , Huỳnh Phương Ngọc , Nguyễn Phúc Huy , Vi Nhã Trân , Nguyễn Hoàng Vũ , Phạm Đỗ Hoàng Huy , Lê Thành Phước , Lưu Anh Thảo , Nguyễn Thị Kim Huê Trần Thanh Mến *

* Tác giả liên hệ (ttmen@ctu.edu.vn)

Abstract

Green macroalgae is a resource that provides rich and diverse biological activities. Among them, C. taxifolia is a species of green algae. In this study, the chemical composition and in vitro antioxidant, anti-inflammatory and antibacterial activities of algal extract were investigated. Quantitative results of total polyphenol content reached 91,49±2,09 mg GAE/g extract, flavonoid content reached 226,00±6,00 mg QE/g extract.. The results of the antioxidant activity studies showed that C. taxifolia  ethanol extract achieved 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging (IC50=11302,33 µg/mL), followed by reduction capacity with the value  of  OD0.5= 780 μg/mL. For anti-inflammatory activity, C. taxifolia extract effectively inhibited albumin denaturation from bovine serum reaching 132,49% at a concentration of 100 µg/mL. C. taxifolia extract showed antibacterial activity against two bacterial strains B. cereus và E. coli with antibacterial diameters of 5,67±0,58 mm and 1,33±0,58 mm respectively at the concentration 40 mg/mL. The results have demonstrated the antioxidant, anti-inflammatory and antibacterial potential of C. taxifolia algae, contributing to creating a scientific basis for the application of algae in food products as well as in medicine.

Keywords: Antibacterial, anti-inflammatory, antioxidant, Caulerpa taxifolia

Tóm tắt

Tảo lục là nguồn nguyên liệu giàu các hoạt tính sinh học. Trong đó, tảo Caulerpa taxifolia (Guột liềm) là một loài thuộc ngành tảo lục. Thành phần hóa học và hoạt tính kháng oxy hóa, kháng viêm và kháng khuẩn của cao chiết ethanol tảo Guột liềm đã được khảo sát trong nội dung đề tài này. Kết quả định lượng polyphenol tổng cho thấy cao ethanol chiết xuất từ C. taxifolia có 91,49±2,09 mg GAE/g cao chiết, hàm lượng flavonoid là 226,00±6,00 mg QE/g cao chiết. Kết quả khảo sát hoạt tính kháng oxy hóa chứng minh tảo C. taxifolia có khả năng trung hoà gốc tự do DPPH khá thấp đạt giá trị IC50= 11302,33 µg/mL và năng lực khử sắt OD0,5= 780 μg/mL Đối với khả năng ức chế sự biến tính albumin từ huyết thanh bò, cao chiết C. taxifolia đạt 132,49 % ở nồng độ 100 mg/ mL. Cao chiết C. taxifolia thể hiện hoạt tính kháng đối với 2 dòng vi khuẩn Bacillus cereus and Escherichia coli với đường kính vòng kháng khuẩn tương ứng 5,67±0,58 mm và 1,33±0,58 mm ở nồng độ 40 mg/mL. Từ kết quả khảo sát đã chứng minh tiềm năng kháng oxy hoá, kháng viêm và kháng khuẩn của tảo C. taxifolia cho thấy tiềm năng việc ứng dụng tảo biển trong các sản phẩm thực phẩm cũng như trong y học.

Từ khóa: Kháng oxy hóa, kháng khuẩn, kháng viêm, tảo lục

Article Details

Tài liệu tham khảo

Agbo, M., Uzor, P., Akazie Nneji, U., Eze Odurukwe, C., Ogbatue, U., & Mbaoji, E. (2015). Antioxidant, total phenolic and flavonoid content of Selected Nigerian medicinal plants. Dhaka University Journal of Pharmaceutical Sciences, 14(1), 35–41.

Arunachalam, M. K. and K. D. (2008). Evaluation of in vitro antibacterial property of seaweeds of southeast coast of India. African Journal of Biotechnology, 7(12), 1959–1960.

Aryee, A. N., Agyei, D., & Akanbi, T. O. (2018). Recovery and utilization of seaweed pigments in food processing. Current Opinion in Food Science, 19, 113–119. https://doi.org/10.1016/j.cofs.2018.03.013

Bag, G. C., Grihanjali Devi, P., & Bhaigyaba, T. (2015). Assessment of total flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur valley. International Journal of Pharmaceutical Sciences Review and Research, 30(1), 154–159.

Baharfar, R., Azimi, R., & Mohseni, M. (2015). Antioxidant and antibacterial activity of flavonoid-, polyphenol and anthocyanin-rich extracts from Thymus kotschyanus Boiss. & Hohen. aerial parts. Journal of Food Science and Technology, 52(10), 6777–6783.

Cermeño, M. ., Kleekayai, T. ., & Amigo-Benavent, M.; Harnedy-Rothwell, P.; FitzGerald, R. J. (2020). Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41, 1694–1717.

Chang, S. T., Wu, J. H., Wang, S. Y., Kang, P. L., Yang, N. S., & Shyur, L. . (2001). Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural and Food Chemistry, 49(7), 3420–3424.

Chia, S. R., Ong, H. C., Chew, K. W., Show, P. L., Phang, S. M., Ling, T. C., Nagarajan, D., Lee, D. J., & Chang, J. S. (2018). Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy, 129, 838–852. https://doi.org/10.1016/j.renene.2017.04.001

Dai, D. K., & Mumper, R. . (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15, 7313–7352.

Diem, Q. D., Angkawijaya, E. A., Phuong, L. T. ., Lien, H. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2013). ScienceDirect Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001

Dut Jasuja, N., Sharma, S. K., Saxena, R., Choudhary, J., Sharma, R., & Joshi, S. C. (2013). Journal of Medicinal Plants Research Antibacterial, antioxidant and phytochemical investigation of Thuja orientalis leaves. 7(25), 1886–1893. https://doi.org/10.5897/JMPR12.1323

Hamid, S. S. ., Wakayama, M. ., Ichihara, K. ., Sakurai, K. ., Ashino, Y. ., Kadowaki, R. ., Soga, T. ., & Tomita, M. (2019). Metabolome profiling of various seaweed species discriminates between brown, red, and green algae. Planta, 249, 1921–1947.

Haq, S. H., Al-Ruwaished, G., Al-Mutlaq, M. A., Naji, S. A., Al-Mogren, M., Al-Rashed, S., Ain, Q. T., Al-Amro, A. A., & Al-Mussallam, A. (2019). Antioxidant, Anticancer Activity and Phytochemical Analysis of Green Algae, Chaetomorpha Collected from the Arabian Gulf. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-55309-1

Harborne, J., & Williams, C. A. (2001). Anthocyanins and other flavonoids. Natural Product Reports, 18(3), 310–333.

Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology and Therapeutics, 96, 67–202.

Hộ, H. H. (1969). Marine algae of South Vietnam (Vietnam seaweed). Viện Hải Dương Học Nha Trang. http://113.160.249.209:8080/xmlui/handle/123456789/19406

Jain, N., Goyal, S., & Ramawat, K. G. (2011). Evaluation of antioxidant properties and total phenolic content of medical plants used in diet therapy during postpartum healthcare in Rajasthan. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 248–253.

Lomartire, S., & Gonçalves, A. M. M. (2022). An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. In Marine Drugs, 20(2). https://doi.org/10.3390/md20020141

Macedo, N. R. P. V., Ribeiro, M. S., Villaça, R. C., Ferreira, W., Pinto, A. M., Teixeira, V. L., Cirne-Santos, C., Paixão, I. C. N. P., & Giongo, V. (2012). Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Revista Brasileira de Farmacognosia, 22(4), 861–867. https://doi.org/10.1590/S0102-695X2012005000072

Mến, T. T. ., Phúc, H. N. ., & Huê, K. T. N. (2022). Nghiên cứu hoạt tính kháng oxy hóa và kháng khuẩn của chiếc xuất ethanol từ tảo lục (Caulerpa racemosa) tại tỉnh Kiên Giang. TNU Journal of Science and Technology, 227(01), 83–91. https://doi.org/10.34238/tnu-jst.5083

Miller, A. L. (1996). Antioxidant flavonoids: Structure, function and clinical usage. Alternative Medicine Review, 1(2), 103–111.

Moreno-Quirós, C. ., Sánchez-Medina, A., Vázquez-Hernández, M Hernández Reyes, A. ., & García-Rodríguez, R. . (2017). Antioxidant, anti-inflammatory and antinociceptive potential of Ternstroemia sylvatica Schltdl. & Cham. Asian Pacific Journal of Tropical Medicine, 10(11), 1047–1053.

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, 47.

Papich, M. G. (2013). Antimicrobials, Susceptibility Testing, and Minimum Inhibitory Concentrations (MIC) in Veterinary Infection Treatment. Veterinary Clinics of North America: Small Animal Practice, 43(5), 1079–1089. https://doi.org/10.1016/j.cvsm.2013.04.005

Prakash, D., Bindal, M. C., Gupta, S. K., Gupta, A. K., & Pradesh, U. (2013). Antiarthritic activity of milk extract of Semecarpus anacardium nut. International Research Journal of Pharmacy, 4(8), 158–160. https://doi.org/10.7897/2230-8407.04830

Quang, V. N. ., & Jong, B. E. (2011). Antioxidant activity of solvent extracts from Vietnamese medicinal plants. Journal of Medicinal Plants Research, 5(13), 2798–2811.

Rajeswaramma, R., & Jayasree, D. (2018). In vitro antiI-Inflammatory activity of Anacardium occidentale seed extract. IOSR Journal of Dental and Medical Sciences, 17(1), 18–22.

Sari, D. M., Anwar, E., Nurjanah, & Arifianti, A. E. (2019). Antioxidant and tyrosinase inhibitor activities of ethanol extracts of brown seaweed (Turbinaria conoides) as lightening ingredient. Pharmacognosy Journal, 11(2), 379–382. https://doi.org/10.5530/pj.2019.11.58

Selvaraj, P., Neethu, E., Rathika, P., Jayaseeli, J. P. R., Jermy, B. R., AbdulAzeez, S., Borgio, J. F., & Dhas, T. S. (2020). Antibacterial potentials of methanolic extract and silver nanoparticles from marine algae. Biocatalysis and Agricultural Biotechnology, 28(February), 101719. https://doi.org/10.1016/j.bcab.2020.101719

Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

Shravan, K. N., Kishore, G., Siva, K. G., & Sindhu, E. S. (2011). In vitro anti-inflammatory and anti-arthritic activity of leaves of Physalis angulata L. International Journal of Pharmacy and Industrial. Research, 1(3), 211–213.

Sudhakar, M. P., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production, 228, 1320–1333. https://doi.org/10.1016/j.jclepro.2019.04.287

Thông, M. N. (2016). Nghiên cứu cấu trúc, khả năng chống oxy hóa của một số polyphenol và dẫn xuất trên nền fullerene (C60) bằng phương pháp hóa tính toán. Trường Đại học Khoa học, Đại học Huế.

Titlyanov, E. A., Titlyanova, T. V., Li, X., & Huang, H. (2017). Common Marine Algae of Hainan Island (Guidebook). In Coral Reef Marine Plants of Hainan Island. https://doi.org/10.1016/b978-0-12-811963-1.00004-4

Ullah, H. M. A., Zaman, S., & Juhara, F. (2014). Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complementary and Alternative Medicine, 14, 346.

Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. https://doi.org/10.1038/nprot.2007.521

Yang, Y., Zhang, M., Alalawy, A. I., Almutairi, F. M., Al-Duais, M. A., Wang, J., & Salama, E. S. (2021). Identification and characterization of marine seaweeds for biocompounds production. Environmental Technology and Innovation, 24, 101848. https://doi.org/10.1016/j.eti.2021.101848

Yap, W. F., Tay, V., Tan, S. H., Yow, Y. Y., & Chew, J. (2019). Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and caulerpa lentillifera. Antibiotics, 8(3). https://doi.org/10.3390/antibiotics8030152

Zhao, Y., Chen, S., Wang, Y., Ly, C., Wang, J., Lu, J., & J. (2018). Effect of drying processes on.

Zhu, Q. Y., Hackman, R. M., Ensunsa, J. L., Holt, R. R., & Keen, C. L. (2002). Antioxidative Activities of Oolong Tea. Journal of Agricultural and Food Chemistry, 50(23), 6929–6934. https://doi.org/10.1021/jf0206163