Pham Khanh Nguyen Huan , Vo Thai Kieu My and Ha Thi Kim Quy *

* Corresponding author (htkquy@ctu.edu.vn)

Abstract

This study focuses on the green synthesis method of ZnO microparticles combined with Sonneratia caseolaris L. leaf extract to find new sources of biologically active materials. Wet-lab experiments were conducted to investigate suitable conditions for green synthesis of these microparticles by adding S. aseolaris leaf extract with the support of Design Expert software using response surface methodology (RSM). The results show suitable conditions for green synthesis of ZnO microparticles: extract concentration of 0.1%, reaction temperature of 50°C, and 1-hour reaction time. The product was investigated for its physicochemical characteristics and antioxidant activity, showing that when the leaf extract was added, the activity of the microparticle system was significantly enhanced, and the difference was statistically significant. This result proposed an essential premise for further research investigating the biological activity and application potential of the green synthesis of ZnO microparticles combined with S. aseolaris leaf extract.

Keywords: Antioxidants, RSM, Sonneratia caseolaris, ZnO microparticles

Tóm tắt

Nghiên cứu này tập trung vào phương pháp tổng hợp xanh hệ vi hạt ZnO kết hợp với cao chiết lá Bần chua nhằm tìm ra các nguồn vật liệu mới có hoạt tính sinh học. Các thí nghiệm khảo sát điều kiện thích hợp tổng hợp hệ vi hạt được bố trí thực nghiệm kết hợp với mô hình bề mặt đáp ứng (RSM) và sự hỗ trợ của phần mềm Design Expert. Kết quả cho thấy điều kiện phù hợp để tổng hợp xanh hệ vi hạt ZnO có bổ sung cao chiết là nồng độ cao chiết 0,1%, nhiệt độ phản ứng 50°C và thời gian phản ứng khoảng 1 giờ. Sản phẩm được khảo sát các đặc điểm hóa lý và hoạt tính kháng oxi hóa cho thấy khi có bổ sung cao chiết thì hoạt tính kháng oxi hóa của hệ vi hạt tốt hơn và sự khác biệt có ý nghĩa thống kê. Kết quả này tạo tiền đề quan trọng cho các nghiên cứu tiếp theo về khảo sát hoạt tính sinh học và tiềm năng ứng dụng hệ vi hạt ZnO kết hợp cao chiết lá Bần chua.

Từ khóa: Kháng oxi hóa, RSM, Sonneratia caseolaris, vi hạt ZnO

Article Details

References

Abdelbaky, A. S., Abd El-Mageed, T. A., Babalghith, A. O., Selim, S., & Mohamed, A. M. H. A. (2022). Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants, 11(8), 1444. https://doi.org/10.3390/antiox11081444

Agarwal, H., Kumar, S. V., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406–413. https://doi.org/10.1016/j.reffit.2017.03.002

Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15, 100223. https://doi.org/10.1016/j.scp.2020.100223

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019

Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids and Surfaces B: Biointerfaces, 111, 556–560. https://doi.org/10.1016/j.colsurfb.2013.06.041

Dev, S., Acharyya, R. N., Akter, S., Al Bari, M. A., Asma, K., Hossain, H., Sarkar, K. K., Biswas, N. N., & Das, A. K. (2021). Toxicological screening and evaluation of anti-allergic and anti-hyperglycemic potential of Sonneratia caseolaris (L.) Engl. fruits. Clinical Phytoscience, 7, 1–13. https://doi.org/10.1186/s40816-021-00301-4

Karam, S. T., & Abdulrahman, A. F. (2022). Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract. Photonics, 9(8), 594. https://doi.org/10.3390/photonics9080594

Kasote, D. M., Jayaprakasha, G. K., & Patil, B. S. (2019). Leaf disc assays for rapid measurement of antioxidant activity. Scientific Reports, 9(1), 1884. https://doi.org/10.1038/s41598-018-38036-x

Lallo da Silva, B., Abuçafy, M. P., Berbel Manaia, E., Oshiro Junior, J. A., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. International Journal of Nanomedicine, 9395–9410. https://doi.org/10.2147/IJN.S216204

Mäkelä, M. (2017). Experimental design and response surface methodology in energy applications: A tutorial review. Energy Conversion and Management, 151, 630–640. https://doi.org/10.1016/j.enconman.2017.09.021

Martemucci, G., Portincasa, P., Di Ciaula, A., Mariano, M., Centonze, V., & D’Alessandro, A. G. (2022). Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mechanisms of Ageing and Development, 206, 111707. https://doi.org/10.1016/j.mad.2022.111707

Nguyen, L. T. T., Nguyen, T. T., Nguyen, H. N., & Bui, Q. T. P. (2024). Analysis of active compounds and bioactivity of leaves extracts of Sonneratia species. Engineering Reports, e12870. https://doi.org/10.1002/eng2.12870

Salahi, F., Zarei-Jelyani, F., Farsi, M., & Rahimpour, M. R. (2023). Optimization of hydrogen production by steam methane reforming over Y-promoted Ni/Al2O3 catalyst using response surface methodology. Journal of the Energy Institute, 108, 101208. https://doi.org/10.1016/j.joei.2023.101208

Shah, M. Z., Guan, Z.-H., Din, A. U., Ali, A., Rehman, A. U., Jan, K., Faisal, S., Saud, S., Adnan, M., & Wahid, F. (2021). Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Scientific Reports, 11(1), 20754. https://doi.org/10.1038/s41598-021-00296-5

Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7, 219–242. https://doi.org/10.1007/s40820-015-0040-x

Subramani, S., Govindasamy, R., & Rao, G. L. N. (2020). Predictive correlations for NOx and smoke emission of DI CI engine fuelled with diesel-biodiesel-higher alcohol blends-response surface methodology approach. Fuel, 269, 117304. https://doi.org/10.1016/j.fuel.2020.117304

Velsankar, K., Venkatesan, A., Muthumari, P., Suganya, S., Mohandoss, S., & Sudhahar, S. (2022). Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities. Journal of Molecular Structure, 1255, 132420. https://doi.org/10.1016/j.molstruc.2022.132420

Yompakdee, C., Thunyaharn, S., & Phaechamud, T. (2012). Bactericidal activity of methanol extracts of crabapple mangrove tree (Sonneratia caseolaris Linn.) against multi-drug resistant pathogens. Indian Journal of Pharmaceutical Sciences, 74(3), 230. https://doi.org/10.4103/0250-474X.106065

Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Research Letters, 15(1), 115. https://doi.org/10.1186/s11671-020-03344-7

Zhang, Y., Mahdavi, B., Mohammadhosseini, M., Rezaei-Seresht, E., Paydarfard, S., Qorbani, M., Karimian, M., Abbasi, N., Ghaneialvar, H., & Karimi, E. (2021). Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical characterization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arabian Journal of Chemistry, 14(5), 103105. https://doi.org/10.1016/j.arabjc.2021.103105