Pham Khanh Nguyen Huan , Vo Thi Thao Nhi and Ha Thi Kim Quy *

* Corresponding author (htkquy@ctu.edu.vn)

Abstract

Using natural preservatives for fruit has been a concern for scientists. Therefore, this study aims to synthesize a sol-gel system containing ZnO-gelatin-Elaeocarpus hygrophilus Kurz leaf extract for application in surface coating for preserving tomatoes. The results showed that the appropriate conditions for synthesizing microparticle systems containing ZnO-gelatin-extract for application in mixing to create sol-gel systems with concentrations of 0.5% and 1.0% are: 0.3125 g of zinc acetate, 0.1565 g of gelatin, and 0.1250 g of leaf extract. Combining wet-lab experimental research and predictions based on response surface modeling (RSM) shows that all three factors, Zinc acetate (A), Gelatin (B), and Extract (C), all contribute significantly to improving the effectiveness of forming a sol-gel system containing ZnO-gelatin-extract in preserving tomatoes. This result creates an essential premise for further research to investigate the ability to preserve other fruits based on this potential microparticle system and investigate related biological activities.

Keywords: Elaeocarpus hygrophilus, fruit preservation, RSM, sol-gel solution, ZnO microparticles

Tóm tắt

Sử dụng chất bảo quản có nguồn gốc tự nhiên trong lĩnh vực bảo quản trái cây đang là chủ đề quan tâm của các nhà khoa học. Do đó, hướng nghiên cứu tổng hợp hệ sol-gel chứa ZnO-gelatin-cao chiết lá Cà na (Elaeocarpus hygrophilus Kurz.) ứng dụng tạo màng bề mặt (coating) bảo quản Cà chua được thực hiện. Nghiên cứu cho thấy rằng điều kiện thích hợp để tổng hợp hệ vi hạt chứa ZnO-gelatin-cao chiết trong phối trộn tạo hệ sol-gel nồng độ 0,5% và 1,0% là: khối lượng kẽm acetate 0,3125 g, gelatin 0,1565 g và cao chiết 0,1250 g. Kết hợp nghiên cứu thực nghiệm và dự đoán dựa trên mô hình Bề mặt Đáp ứng (RSM) cho thấy cả 03 yếu tố Kẽm acetate, Gelatin và Cao chiết đều góp phần quan trọng nâng cao hiệu quả tạo thành hệ sol-gel trong bảo quản Cà chua. Kết quả này tạo tiền đề quan trọng cho các nghiên cứu tiếp theo thực hiện khảo sát khả năng bảo quản các loại trái cây khác dựa trên nền hệ vi hạt tiềm năng này và khảo sát hoạt tính sinh học có liên quan.

Từ khóa: Bảo quản trái cây, Cà na, hệ sol-gel, RSM, vi hạt ZnO

Article Details

References

Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., de Melo, E. A., & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309, 125566. https://doi.org/10.1016/j.foodchem.2019.125566

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019

Divya, M., Vaseeharan, B., Abinaya, M., Vijayakumar, S., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Benelli, G. (2018). Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. Journal of Photochemistry and Photobiology B: Biology, 178, 211–218. https://doi.org/10.1016/j.jphotobiol.2017.11.008

Fung, F., Wang, H.-S., & Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41(2), 88–95. https://doi.org/10.1016/j.bj.2018.03.003

Gvozdenko, A. A., Siddiqui, S. A., Blinov, A. V, Golik, A. B., Nagdalian, A. A., Maglakelidze, D. G., Statsenko, E. N., Pirogov, M. A., Blinova, A. A., & Sizonenko, M. N. (2022). Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Scientific Reports, 12(1), 12843. https://doi.org/10.1038/s41598-022-16878-w

Ha, T. K. Q., Doan, T. P., Pham, H. T. T., Nguyen, N. H., Nguyen, T. T., & Bui, T. B. H. (2021). Molecular networking-based chemical profiling and anti-influenza viral and neuroprotective effects of Elaeocarpus hygrophilus Kurz. Chemical Papers, 75, 5323–5337. https://doi.org/10.1007/s11696-021-01723-7

Jin, S.-E., & Jin, H.-E. (2021). Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: From physicochemical characteristics to pharmacological aspects. Nanomaterials, 11(2), 263. https://doi.org/10.3390/nano11020263

Katavic, P. L., Venables, D. A., Rali, T., & Carroll, A. R. (2007). Indolizidine alkaloids with δ-opioid receptor binding affinity from the leaves of Elaeocarpus fuscoides. Journal of Natural Products, 70(5), 872–875. https://doi.org/10.1021/np060607e

Kumar, S., Mudai, A., Roy, B., Basumatary, I. B., Mukherjee, A., & Dutta, J. (2020). Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods, 9(9), 1143. https://doi.org/10.3390/foods9091143

La, D. D., Nguyen-Tri, P., Le, K. H., Nguyen, P. T. M., Nguyen, M. D.-B., Vo, A. T. K., Nguyen, M. T. H., Chang, S. W., Tran, L. D., & Chung, W. J. (2021). Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for post-harvest banana preservation. Progress in Organic Coatings, 151, 106057. https://doi.org/10.1016/j.porgcoat.2020.106057

Mäkelä, M. (2017). Experimental design and response surface methodology in energy applications: A tutorial review. Energy Conversion and Management, 151, 630–640. https://doi.org/10.1016/j.enconman.2017.09.021

Nguyen, T.-N.-N., Vo, T.-N., Nguyen, K.-P.-P., Nguyen, T.-H., & Nguyen, T.-A.-T. (2024). A new cucurbitane− type triterpenoid from the bark of Elaeocarpus hygrophilus Kurz. Natural Product Research, 1–7. https://doi.org/10.1080/14786419.2024.2330539

Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7, 1776–1782. https://doi.org/10.1007/s12161-014-9814-x

Salahi, F., Zarei-Jelyani, F., Farsi, M., & Rahimpour, M. R. (2023). Optimization of hydrogen production by steam methane reforming over Y-promoted Ni/Al2O3 catalyst using response surface methodology. Journal of the Energy Institute, 108, 101208. https://doi.org/10.1016/j.joei.2023.101208

Sapkota, A., Anceno, A. J., Baruah, S., Shipin, O. V, & Dutta, J. (2011). Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology, 22(21), 215703. https://doi.org/10.1088/0957-4484/22/21/215703

Sawai, J., Shoji, S., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M., & Kojima, H. (1998). Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of Fermentation and Bioengineering, 86(5), 521–522. https://doi.org/10.1016/S0922-338X(98)80165-7

Scotter, M. J., & Castle, L. (2004). Chemical interactions between additives in foodstuffs: a review. Food Additives and Contaminants, 21(2), 93–124. https://doi.org/10.1080/02652030310001636912

Shan, Y., Li, T., Qu, H., Duan, X., Farag, M. A., Xiao, J., Gao, H., & Jiang, Y. (2023). Nano‐preservation: An emerging postharvest technology for quality maintenance and shelf life extension of fresh fruit and vegetable. Food Frontiers, 4(1), 100–130. https://doi.org/10.1002/fft2.201

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Subramani, S., Govindasamy, R., & Rao, G. L. N. (2020). Predictive correlations for NOx and smoke emission of DI CI engine fuelled with diesel-biodiesel-higher alcohol blends-response surface methodology approach. Fuel, 269, 117304. https://doi.org/10.1016/j.fuel.2020.117304