Nguyen Thi Kim Ngan , ThS. Tran Chi Linh , Vo Vy Anh , To Hoang Duy , Vo Hoang Long , Tran Nguyen Kim Ngan and Dai Thi Xuan Trang *

* Corresponding author (dtxtrang@ctu.edu.vn)

Abstract

The study aims to find the bacteria Hydnophytum formicarum endophytic bacteria that have the ability to produce antioxidants (total flavonoid content (TFC), total antioxidant capacity (TAC), and reducing power (RP)). In addition, promising bacterial strains were identified through observing morphology, and 16s rRNA. Samples of roots, stems and leaves of Hydnophytum formicarum plant in Phu Quoc city, Kien Giang province were used as raw materials to isolate bacteria. The results showed that a total of 25 endophytic bacterial strains isolated from different parts Hydnophytum formicarum had potential antioxidant activity. Among them, three bacterial strains HF-L5, HF-T11 and HF-R6 were selected for identification. The results showed that these bacterial strains belong to the Bacillus genera (strains HF-L5 and HF-T11) and Pantoea (strain HF-R6).

Keywords: Endophytic bacteria, flavonoid, phosphomolybdenum, reducing power

Tóm tắt

Nghiên cứu được thực hiện nhằm phân lập vi khuẩn nội sinh trong cây bí kỳ nam (Hydnophytum formicarum) có khả năng tạo ra chất chống oxy hoá (hàm lượng flavonoid tổng (TFC), chống oxy hoá tổng (TAC) và khả năng khử sắt (RP)). Ngoài ra, các dòng vi khuẩn có khả năng chống oxy hoá cao được định danh qua việc quan sát hình thái học,16s rRNA. Các mẫu rễ, thân và lá của cây bí kỳ nam ở thành phố Phú Quốc, tỉnh Kiên Giang được dùng làm nguyên liệu để phân lập vi khuẩn. Kết quả cho thấy tổng cộng 25 dòng vi khuẩn nội sinh được phân lập từ các bộ phận khác nhau của cây Bí kỳ nam đều có hoạt tính chống oxy hoá. Trong đó, 3 dòng vi khuẩn HF-L5, HF-T11 và HF-R6 được chọn để tiến hành định danh. Kết quả cho thấy các dòng vi khuẩn này thuộc chi Bacillus (dòng HF-L5 và HF-T11) và Pantoea (dòng HF-R6).

Từ khóa: Vi khuẩn nội sinh, flavonoid, phosphomolybdenum, năng lực khử sắt

Article Details

References

Akinsanya, M. A., Goh, J. K., Lim, S. P., & Ting, A. S. Y. (2015). Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS microbiology letters, 362(23), fnv184. https://doi.org/10.1093/femsle/fnv184

Aliyu, A. B., Ibrahim, M. A., Musa, A. M., Musa, A. O., Kiplimo, J. J., & Oyewale, A. O. (2013). Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl.(Araceae). Acta Pol Pharm, 70(1), 115-121.

Almuhayawi, M. S., Abdel-Mawgoud, M., Al Jaouni, S. K., Almuhayawi, S. M., Alruhaili, M. H., Selim, S., & AbdElgawad, H. (2021). Bacterial endophytes as a promising approach to enhance the growth and accumulation of bioactive metabolites of three species of Chenopodium Sprouts. Plants, 10(12), 2745. https://doi.org/10.3390/plants10122745

Aravind, R., Kumar, A., Eapen, S. J., & Ramana, K. V. (2009). Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora Capsici. Letters in Applied Microbiology, 48(1), 58-64. https://doi.org/10.1111/j.1472-765X.2008.02486.x

Chen, M., Zhao, Z., Meng, H., & Yu, S. (2017). The antibiotic activity and mechanisms of sugar beet (Beta vulgaris) molasses polyphenols against selected food-borne pathogens. LWT-food Science and Technology, 82, 354-360. https://doi.org/10.1016/j.lwt.2017.04.063

Darwis, D., Hertiani, T., & Samito, E. (2014). The effects of Hydnophytum formicarum ethanolic extract towards lymphocyte, vero and T47d cells proliferation in vitro. Journal of Applied Pharmaceutical Science, 4(6), 103-109. https://dx.doi.org/10.7324/JAPS.2014.40616

Dastager, S. G., Deepa, C. K., Puneet, S. C., Nautiyal, C. S., & Pandey, A. (2009). Isolation and characterization of plant growth‐promoting strain Pantoea NII‐186. From Western Ghat Forest soil, India. Letters in Applied Microbiology, 49(1), 20-25. https://doi.org/10.1111/j.1472-765X.2009.02616.x

Elswaifi, S. F., Palmieri, J. R., Hockey, K. S., & Rzigalinski, B. A. (2009). Antioxidant nanoparticles for control of infectious disease. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 9(4), 445-452. https://doi.org/10.2174/187152609788922528

Essghaier, B., Mallat, N., Khwaldia, K., Mottola, F., Rocco, L., & Hannachi, H. (2023). Production and characterization of new biosurfactants/bioemulsifiers from Pantoea alhagi and their antioxidant, antimicrobial and anti-biofilm potentiality evaluations. Molecules, 28(4), 1912. https://doi.org/10.3390/molecules28041912

Fouad, H., Hongjie, L., Yanmei, D., Baoting, Y., El-Shakh, A., Abbas, G., & Jianchu, M. (2017). Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity. Artificial cells, Nanomedicine, and Biotechnology, 45(7), 1369-1378. https://doi.org/10.1080/21691401.2016.1241793

Hiệp, L. T. H., & Điệp, C. N. (2011). Phân lập và nhận diện vi khuẩn nội sinh trong cây cúc xuyên chi (Wedelia trilobata (L.) Hitche.) Bằng kỹ thuật PCR. Tạp chí Khoa học Đại học Cần Thơ, (18a), 168-176.

Huyut, Z., Beydemir, Ş., & Gülçin, İ. (2017). Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry research international, 2017(1), 7616791.https://doi.org/10.1155/2017/7616791

Huxley, C. R., & Jebb, M. (1991). The tuberous epiphytes of the Rubiaceae 1: A new subtribe—The Hydnophytinae. Blumea: Biodiversity, Evolution and Biogeography of Plants, 36(1), 1-20.

Ilhami, G., Malahat, A., Taslimi, P., Zubeyir, H., Leyla, S., Afsun, S., ... & Claudiu T, S. (2017). Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1174-1182. https://doi.org/10.1080/14756366.2017.1368019

Kudo-Saito, C., Shirako, H., Ohike, M., Tsukamoto, N., & Kawakami, Y. (2013). CCL2 is critical for immunosuppression to promote cancer metastasis. Clinical & Experimental Metastasis, 30, 393-405. https://doi.org/10.1007/s10585-012-9545-6

Liu, Y. H., Guo, J. W., Salam, N., Li, L., Zhang, Y. G., Han, J., Mohamad, O. A., & Li, W. J. (2016). Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech, 6, 1-9. https://doi.org/10.1007/s13205-016-0522-7

Matíc, P., Sabljić, M., & Jakobek, L. (2017). Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. Journal of AOAC International, 100(6), 1795-1803. https://doi.org/10.5740/jaoacint.17-0066

Neumann, B., Pospiech, A., & Schairer, H. U. (1992). Rapid isolation of genomic DNA from Gram-negative bacteria. Trends in Genetics, 8(10), 332-333. https://doi.org/10.1016/0168-9525(92)90269-A

Nguyen, M. T. T., Awale, S., Tezuka, Y., Le Tran, Q., Watanabe, H., & Kadota, S. (2004). Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biological and Pharmaceutical Bulletin, 27(9), 1414-1421. https://doi.org/10.1248/bpb.27.1414

Nisa, S., Shoukat, M., Bibi, Y., Al Ayoubi, S., Shah, W., Masood, S., Sabir, M., Bano, S. A., & Qayyum, A. (2022). Therapeutic prospects of endophytic Bacillus species from Berberis lycium against oxidative stress and microbial pathogens. Saudi Journal of Biological Sciences, 29(1), 287-295. https://doi.org/10.1016/j.sjbs.2021.08.099

Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307

Öztaşkın, N., Çetinkaya, Y., Taslimi, P., Göksu, S., & Gülçin, İ. (2015). Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives. Bioorganic chemistry, 60, 49-57. https://doi.org/10.1016/j.bioorg.2015.04.006

Pellegrino, D. (2016). Antioxidants and cardiovascular risk factors. Diseases, 4(1), 11. https://doi.org/10.3390/diseases4010011

Photolo, M. M., Mavumengwana, V., Sitole, L., & Tlou, M. G. (2020). Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. International Journal of Microbiology, 2020, 1-11. https://doi.org/10.1155/2020/9483670

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019

Rachpirom, M., Barrows, L. R., Thengyai, S., Ovatlarnporn, C., Sontimuang, C., Thiantongin, P., & Puttarak, P. (2022). Antidiabetic Activities of Medicinal Plants in Traditional Recipes and Candidate Antidiabetic Compounds from Hydnophytum formicarum Jack. Tubers. Pharmacognosy Research, 14(1), 89-99. 10.5530/pres.14.1.13

Rovná, K., Ivanišová, E., Žiarovská, J., Ferus, P., Terentjeva, M., Kowalczewski, P. Ł., & Kačániová, M. (2020). Characterization of Rosa canina fruits collected in urban areas of Slovakia. Genome size, iPBS profiles and antioxidant and antimicrobial activities. Molecules, 25(8), 1888. https://doi.org/10.3390/molecules25081888

Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters, 278(1), 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological research, 183, 92-99. https://doi.org/10.1016/j.micres.2015.11.008

Senawong, T., Misuna, S., Khaopha, S., Nuchadomrong, S., Sawatsitang, P., Phaosiri, C., Surapaitoon, A., & Sripa, B. (2013). Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. BMC Complementary and Alternative Medicine, 13, 1-11. https://doi.org/10.1186/1472-6882-13-232

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Sulja, A., Pothier, J. F., Blom, J., Moretti, C., Buonaurio, R., Rezzonico, F., & Smits, T. H. (2022). Comparative genomics to examine the endophytic potential of Pantoea agglomerans DAPP-PG 734. BMC genomics, 23(1), 742. https://doi.org/10.1186/s12864-022-08966-y

Tan, X. M., Zhou, Y. Q., Zhou, X. L., Xia, X. H., Wei, Y., He, L. L., Tang, H. Z., & Yu, L. Y. (2018). Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Scientific Reports, 8(1), 5929. https://doi.org/10.1038/s41598-018-24313-2

Tejesvi, M. V., Kini, K. R., Prakash, H. S., Subbiah, V., & Shetty, H. S. (2008). Antioxidant, antihypertensive, and antibacterial properties of endophytic Pestalotiopsis species from medicinal plants. Canadian journal of microbiology, 54(9), 769-780. https://doi.org/10.1139/W08-070

Trac, D., Maxwell, J. T., Brown, M. E., Xu, C., & Davis, M. E. (2019). Aggregation of child cardiac progenitor cells into spheres activates notch signaling and improves treatment of right ventricular heart failure. Circulation Research, 124(4), 526-538. https://doi.org/10.1161/CIRCRESAHA.118.313845

Urumbil, S. K., & Anilkumar, M. N. (2021). Anti-inflammatory activity of endophytic bacterial isolates from Emilia sonchifolia (Linn.) DC. Journal of Ethnopharmacology, 281, 114517. https://doi.org/10.1016/j.jep.2021.114517