Ly Thanh Dong , Tran Trang-Anh N. , Tran Bich-Huyen T. , Tran Bich Thuan , Nguyen Mong Hoang and Nguyen Thi Tuyet Nhung *

* Corresponding author (tuyetnhung@ctu.edu.vn)

Abstract

In this study, a metal-organic framework based on [Zr6O4(OH)4] cluster, termed Zr‑MOF-NH2, was synthesized by the reaction of zirconium chloride (ZrCl4) and 2‑aminobenzene‑1,4‑dicarboxylic acid linker (H2BDC-NH2) in N,N¢‑dimethylformamide (DMF) and formic acid (HCOOH) by solvothermal synthesis. The structure of the resulting material was characterized by powder X‑ray diffraction (PXRD) and fourier‑transform infrared spectroscopy (FT-IR). The morphology of the compound was observed by scanning electronic microscopy (SEM) and the elemental composition was determined by energy dispersion X‑ray spectroscopy (EDS). The Zr‑MOF‑NH2 was further chlorinated with 1% NaDCC solution forming the resulting material Zr‑MOF‑NHCl. The chlorine loading on the material was quantified by the iodometric/thiosulfate titration method.

Keywords: Chlorination, crystallinity, iodometric/thiosulfate titration method, metal-organic framework material

Tóm tắt

Trong nghiên cứu này, vật liệu khung cơ kim dựa trên cluster [Zr6O4(OH)4], gọi là Zr-MOF-NH2 được tổng hợp từ muối zirconium chloride (ZrCl4) và linker 2‑aminobenzene‑1,4‑dicarboxylic acid (H2BDC-NH2) trong hệ dung môi N,N¢‑dimethylformamide (DMF) và formic acid (HCOOH) bằng phương pháp nhiệt dung môi. Cấu trúc của vật liệu được xác định bằng phương pháp nhiễu xạ tia X (PXRD) và phương pháp quang phổ hồng ngoại (FT-IR). Hình thái của mẫu được quan sát bằng kính hiển vi điện tử quét (SEM) và thành phần nguyên tố được xác định bằng phổ tán xạ năng lượng tia X (EDS). Vật liệu Zr‑MOF-NH2 tiếp tục được chlorine hóa bằng dung dịch sodium dichloroisocyanurate (NaDCC) 1% tạo thành vật liệu Zr-MOF-NHCl. Hàm lượng chlorine trong vật liệu được xác định bằng phương pháp chuẩn độ iodometric/thiosulfate.

Từ khóa: Chlorine hóa, độ kết tinh, chuẩn độ idometric/thiosulfate, vật liệu khung cơ kim

Article Details

References

Abid, H. R., Shang J., Ang H.-M., & Wang, S. (2013). Amino-functionalized Zr-MOF nanoparticles for adsorption of CO2 and CH4. International Journal of Smart and Nano Materials, 4(1), 72-82. https://doi.org/10.1080/19475411.2012.688773

Ali-Ahmad A., Hamieh T., Roques-Carmes T., Hmadeh M., & Toufaily J. (2023). Effect of Modulation and Functionalization of UiO-66 Type MOFs on Their Surface Thermodynamic. Properties and Lewis Acid–Base Behavior. 13(1), 205. https://doi.org/10.3390/catal13010205

Bunge, M. A., Davis, A. B., West, K. N., West, C. W., & Glover, T. G. (2018). Synthesis and characterization of UiO-66-NH2 metal–organic framework cotton composite textiles. Industrial & Engineering Chemistry Research, 57(28), 9151-9161. https://doi.org/10.1021/acs.iecr.8b01010

Chen, L., Zhang, X., Cheng, X., Xie, Z., Kuang, Q., & Zheng L. (2020). The function of metal–organic frameworks in the application of MOF-based composites. Nanoscale Advances, 2(7), 2628-2647. https://doi.org/10.1039/D0NA00184H

Cho, K. Y., Seo, J. Y., Kim, H.-J., Pai, S. J., Do, X. H., Yoon, H. G., Hwang, S. S., Han, S. S., & Baek K.-Y. (2019). Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: insights into feasibility of Zr (IV)-based metal-organic framework (MOF) catalysts. Applied Catalysis B: Environmental, 245, 635-647. https://doi.org/10.1016/j.apcatb.2019.01.033

Gu Na, W. T., Li Hong, Ren Weijie, Dong Quianru, & Gao Jinlong. (2023). Activated chlorine modified zirconium-based MOF composites for efficient bacterial inhibition. Acta Materiae Compositae Sinica, 40(10), 5760-5771. https://doi.org/10.13801/j.cnki.fhclxb.20230104.001

Jones, C. W. (2022). Metal–organic frameworks and covalent organic frameworks: emerging advances and applications. Jacs Au, 2(7), 1504-1505. https://doi.org/10.1021/jacsau.2c00376

Liang, Q., Zhang, M., Zhang, Z., Liu, C., Xu, S., & Li Z. (2017). Zinc phthalocyanine coupled with UIO-66 (NH2) via a facile condensation process for enhanced visible-light-driven photocatalysis. Journal of Alloys and Compounds, 690, 123-130. https://doi.org/10.1016/j.jallcom.2016.08.087

Ma, K., Idrees, K. B., Son, F. A., Maldonado, R., Wasson, M. C., Zhang, X., Wang, X., Shehayeb, E., Merhi, A., & Kaafarani, B. R. (2020). Fiber composites of metal–organic frameworks. Chemistry of Materials, 32(17), 7120-7140. https://doi.org/10.1021/acs.chemmater.0c0239

Si, Y., Li, J., Zhao, C., Deng, Y., Ma, Y., Wang, D., & Sun G. (2017). Biocidal and rechargeable N-halamine nanofibrous membranes for highly efficient water disinfection. ACS Biomaterials Science & Engineering, 3(5), 854-862. https://doi.org/10.1021/acsbiomaterials.7b0011

Xue, Q., Chan, K. H., Yim, C. K., Ng, B. K. Y., Chen, T., Day, S. J., Tang, C., Kawaguchi, S., Wong, K.-Y., & Lo, T. W. B. J. C. o. M. (2021). Guest-Anion-Induced Rotation-Restricted Emission in UiO-66-NH2 and Advanced Structure Elucidation, 33(13), 5422-5429.
https://doi.org/10.1021/acs.chemmater.1c0164