Nguyen Thi Tuyet Nhung * , Nguyen Duy Khanh , Nguyen Minh Toan and Nguyen Anh Thu

* Corresponding author (tuyetnhung@ctu.edu.vn)

Abstract

Single (MT-1) and inter-penetrated (int-MT-1) metal organic frameworks were synthesized via solvothermal method from the reaction of zinc nitrate hexahydrate and 1,4-benzenedicarboxylic acid in N,N¢-dimethylformamide (DMF). The morphologies of resulting materials were observed under NHV-CAM microscope. The structures of the single and inter-penetrated frameworks respectively resulted in MT-1 and int-MT-1 were analyzed by powder X-ray diffraction analysis (PXRD) and their thermal stability was also determined by thermal gravimetric analysis (TGA). The porosity of these two materials was proved by Brunauer-Emmett-Teller (BET) method through N2 isotherms at 77 K. The results showed that two materials with single and inter-penetrated frameworks were successfully synthesized as expected. Both materials are highly crystalline with high thermal stability and porosity.
Keywords: Crystallinity, inter-penetrated framework, metal-organic frameworks, porosity, single framework, thermal stability

Tóm tắt

Vật liệu khung cơ kim khung sườn đơn (MT-1) và khung sườn đan xen (int-MT-1) được tổng hợp bằng phương pháp nhiệt dung môi từ muối kẽm nitrate và 1,4-benzenedicarboxylic acid trong dung môi N,N¢-dimethylformamide (DMF). Hình dáng của vật liệu tạo thành được xác định bằng kính hiển vi kỹ thuật số NHV-CAM. Cấu trúc khung sườn đơn và khung sườn đan xen của vật liệu tạo thành được xác định bằng phương pháp nhiễu xạ tia X dạng bột (PXRD) và sự khác nhau về độ bền nhiệt của chúng được chứng minh bằng phương pháp phân tích nhiệt trọng lượng (TGA). Độ xốp của vật liệu được xác định bằng phương pháp Brunauer-Emmett-Teller (BET) qua đường hấp phụ đẳng nhiệt N2 ở 77 K. Kết quả cho thấy vật liệu khung cơ kim khung sườn đơn và khung sườn đan xen được tổng hợp thành công như mong đợi. Cả hai vật liệu đều có độ kết tinh tốt, độ bền nhiệt cao và diện tích bề mặt riêng lớn.
Từ khóa: Độ bền nhiệt, độ kết tinh, độ xốp, khung sườn đan xen, khung sườn đơn, vật liệu khung cơ kim

Article Details

References

Aghajanloo, M., Rashidi, A. M., and Moosavian, M. A., 2014. Synthesis of zinc-organic frameworks nano adsorbent and their application for methane adsorption. Journal of Chemical Engineering & Process Technology. 5(5): 1-6.

Chen, B., Wang, X., Zhang, Q., et al., 2010. Synthesis and characterization of the interpenetrated MOF-5. Journal of Materials Chemistry. 20(18): 3758-3767.

Eddaoudi, M., Li, H., and Yaghi, O. M., 2000. Highly porous and stable metal− organic frameworks: structure design and sorption properties. Journal of the American Chemical Society. 122(7): 1391-1397.

Feng, Y., Jiang, H., Chen, M., and Wang, Y., 2013. Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure. Powder Technology. 249: 38-42.

Furukawa, H., Ko, N., Go, Y. B., et al., 2010. Ultrahigh porosity in metal-organic frameworks. Science. 329(5990): 424-428.

Huang, Y.-B., Liang, J., Wang, X.-S., and Cao, R., 2017. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews. 46(1): 126-157.

Hwang, Y. K., Hong, D. Y., Chang, J. S., et al., 2008. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition. 47(22): 4144-4148.

i Xamena, F. L., Cirujano, F., and Corma, A., 2012. An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials. 157: 112-117.

Kalmutzki, M. J., Hanikel, N., and Yaghi, O. M., 2018. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances. 4(10), eaat9180.

Karra, J. R., Grabicka, B. E., Huang, Y.-G., and Walton, K. S., 2013. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal–organic framework (MOF-14). Journal of Colloid and Interface Science. 392: 331-336.

Kaye, S. S., Dailly, A., Yaghi, O. M., and Long, J. R., 2007. Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3(MOF-5). Journal of the American Chemical Society. 129(40): 14176-14177.

Kim, H., Das, S., Kim, M. G., Dybtsev, D. N., Kim, Y., and Kim, K., 2011. Synthesis of phase-pure interpenetrated MOF-5 and its gas sorption properties. Inorganic Chemistry. 50(8): 3691-3696.

Kleist, W., Maciejewski, M., and Baiker, A., 2010. MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application. Thermochimica Acta. 499(1-2): 71-78.

Liu, D., Purewal, J., Yang, J., et al., 2012. MOF-5 composites exhibiting improved thermal conductivity. International Journal of Hydrogen Energy. 37(7): 6109-6117.

O’Keeffe, M., and Yaghi, O. M., 2012. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chemical Reviews. 112(2): 675-702.

Rowsell, J. L., and Yaghi, O. M., 2004. Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials. 73(1-2): 3-14.

Rowsell, J. L., and Yaghi, O. M. 2005. Strategies for hydrogen storage in metal–organic frameworks. Angewandte Chemie International Edition. 44(30): 4670-4679.

Schoedel, A., and Yaghi, O. M., 2016. Reticular chemistry of metal–organic frameworks composed of copper and zinc metal oxide secondary building units as nodes. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications. 1: 41-72.

Schweighauser, L., Harano, K., and Nakamura, E., 2017. Experimental study on interconversion between cubic MOF-5 and square MOF-2 arrays. Inorganic Chemistry Communications. 84: 1-4.

Shen, K., Chen, X., Chen, J., and Li, Y., 2016. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catalysis. 6(9): 5887-5903.

Soma, C. E., Dubernet, C., Barratt, G., Benita, S., and Couvreur, P., 2000. Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro. Journal of Controlled Release. 68(2): 283-289.

Taylor-Pashow, K. M., Della Rocca, J., Xie, Z., Tran, S., and Lin, W., 2009. Postsynthetic modifications of iron-carboxylate nanoscale metal− organic frameworks for imaging and drug delivery. Journal of the American Chemical Society. 131(40): 14261-14263.

Thornton, A., Jelfs, K., Konstas, K., et al., 2016. Porosity in metal–organic framework glasses. Chemical Communications. 52(19): 3750-3753.

Yaghi, O. M, Li, H., and Groy, T., 1996. Construction of porous solids from hydrogen-bonded metal complexes of 1, 3, 5-benzenetricarboxylic acid. Journal of the American Chemical Society. 118(38): 9096-9101.

Zhao, Z., Ma, X., Li, Z., and Lin, Y., 2011. Synthesis, characterization and gas transport properties of MOF-5 membranes. Journal of Membrane Science. 382(1-2): 82-90.