Dang Huynh Giao * , Pham Quoc Yen , Vo Thanh Phuc , Ta Kieu Anh and Pham Van Toan

* Corresponding author (dhgiao@ctu.edu.vn)

Abstract

Cobalt based-zeolitic imidazolate framework (ZIF-67) is one group of metal organic frameworks (MOFs) and has been well-known as a material, which has the most outstanding physicochemical properties, has been applied to various fields. In this study, ZIF-67 was synthesized and analyzed by X-ray powder diffraction (PXRD), scanning electron microscope (SEM), fourier-transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA). The catalyst activity of ZIF-67 was investigated into rhodamine B (RhB) degradation in presence of peroxymonosulfate (PMS). ZIF-67 was a potent catalyst with high activity which had RhB removal efficiency reach of 100% when pH 3, temperature 35oC, RhB concentration 50 ppm, ratio of ZIF-67 to PMS 1:8. The efficiency on RhB degradation still maintained over 99% and its structure was remained unchanged after a triple use.
Keywords: Catalyst, degradation, rhodamine B, synthesis, ZIF-67

Tóm tắt

Vật liệu khung hữu cơ cấu trúc zeolite tâm cobalt (ZIF-67) là một nhóm của vật liệu khung hữu cơ kim loại (MOFs) và được biết đến như một trong những loại vật liệu có những tính chất hóa lý ưu việt và được ứng dụng trong nhiều lĩnh vực. Trong nghiên cứu này, ZIF-67 được tổng hợp và phân tích cấu trúc bằng nhiễu xạ tia X dạng bột (PXRD), kính hiển vi điện tử quét (SEM), phổ hồng ngoại (FT-IR) và nhiệt trọng lượng (TGA). Hoạt tính xúc tác của ZIF-67 cũng được nghiên cứu thông qua sự phân hủy rhodamine B (RhB) với sự hiện diện của PMS (peroxymonosulfate).  ZIF-67 cho hoạt tính xúc tác tốt với hiệu suất phân hủy RhB đạt 100% với điều kiện tối ưu tại pH 3, nhiệt độ 35oC, nồng độ RhB 50 ppm và tỉ lệ ZIF-67:PMS 1:8. Hiệu suất phân hủy duy trì trên 99% qua ba lần sử dụng mà cấu trúc gần như không thay đổi.
Từ khóa: Phân hủy, rhodamine B, tổng hợp, xúc tác, ZIF-67

Article Details

References

Alvaro, M., Carbonell, E., Ferrer, B., Llabrési Xamena, F. X., and Garcia, H., 2007. Semiconductor behavior of a metal–organic framework(MOF). Chemistry-A EuropeanJournal. 13(18): 5106-5112.

Bhattacharjee, S., Chen, C., and Ahn, W.S., 2014. Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. Royal Society of Chemistry Advances. 4(94): 52500-52525.

Borrows, A. D., Christopher, R. F., Mary, F. M., et al., 2008. Subtle structural variation in copper metal-organic frameworks: syntheses, structures, magnetic properties and catalytic behaviour. Dalton Transactions. (47): 6788-6795.

Corma, A., García, H., and Llabrési Xamena, F.X., 2010. Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews. 110(8): 4606-4655.

Diao, Z.H., Liu, J.J., Hu, Y.Z., Kong, L.J., Jiang, D., and Xu, X.R., 2017. Comparative study ofRhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism. Separation and Purification Technology. 184: 374-383.

Du, J.J., Yuan, Y.P., Sun, J.X., et al., 2011. New photocatalysts based onMIL-53 metal–organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials. 190(1-3): 945-951.

Furukawa, H., Ko, N., Go, Y.B., et al., 2010.Ultrahigh porosity in metal-organic frameworks. Science. 329(5990): 424-428.

Getman, R.B., Bae, Y.S., Wilmer, C.E., and Snurr, R.Q., 2011. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chemical Reviews. 112(2): 703-723.

Gou, W., Su, S., Yi, C., and Ma, Z., 2013. Degradation of antibiotics amoxicillin byCo3O4‐catalyzed peroxymonosulfatesystem. Environmental Progress and Sustainable Energy. 32(2): 193-197.

Huang, Y.H., Huang, Y.F., Huang, C., Chen, C.Y., 2009. Efficient decolorization of azo dyeReactive Black B involving aromatic fragment degradation in bufferedCo2+/PMS oxidative processes with a ppb level dosage ofCo2+-catalyst. Journal of Hazardous Materials. 170(2-3): 1110-1118.

Hendon, C. H., Tiana, D., Fontecave, M., et al., 2013. Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. Journal of theAmerican chemical society. 135(30): 10942–10945.

Huo, S., H and Yan, X. P., 2012. Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. Journal of Materials Chemistry. 22(15): 7449–7455.

Huxford, R.C., Della Rocca, J., and Lin, W., 2010. Metal–organic frameworks as potential drug carriers. Current Opinion in Chemical Biology. 14(2): 262-268.

Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., and Hupp, J.T., 2011. Metal–organic framework materials as chemical sensors. Chemical Reviews. 112(2): 1105-1125.

Dung, L.T., Giao, H.D., Thanh, T.V., and Nam, P.T.S., 2015. Metal-Organic Frameworks: Recent Developments in Viet Nam. Viet Nam Journal of Catalysis and Adsorption. 4(4B): 1-17.

Li, J.R., Sculley, J., and Zhou, H.C., 2011. Metal–organic frameworks for separations. Chemical Reviews. 112(2): 869-932.

Li, Y., Zhou, K., He, M., and Yao, J., 2016. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous and Mesoporous Materials. 234: 287-292.

Lin, K.Y.A., Yang, H., Petit, C., and Hsu, F.K., 2014. Removing oil droplets from water using a copper-based metal organic frameworks. Chemical Engineering Journal. 249: 293–301.

Lin, K.Y.A. and Chang, H.A., 2015. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere. 139: 624-631.

Neta, P., Huie, R. E., and Ross, A. B., 1998. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data. 17(3): 1027-1284.

Ordoñez, M. J. C., Balkus Jr, K. J., , J. P., and n, I. H., 2010. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science. 361(1): 28-37.

Pan, Y., Liu, Y., Zeng, G., Zhao, L., and Lai, Z., 2011. Rapid synthesis of zeolite imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. 47(7):2071-2073.

Park, K.S, Ni, Z., Côté, A.P., Choi, J.Y., et al., 2006. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences. 103(27):10186-10191.

Peralta, D., Chaplais, G., Angelique, S.M., Bathelet, K., and Pirngruber, G.D., 2012. Synthesis and adsorption properties ofZIF-76 isomorphs. Microporous and Mesoporous Materials. 153: 1-7.

Rastogi, A., Al-Abed, S.R., and Dionisious, D.D., 2009. Sulfate radical-based ferrous–peroxymonosulfateoxidative system forPCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental. 85(3-4): 171-179.

Rowsell, J.L.C., Andrew, R.M., Kyo, S.P and Yaghi, O.M., 2004. Hydrogen Sorption in Functionalized Metal−Organic Frameworks. Journal of the American chemical society. 126(18): 5666-5667.

Sun, D., Fu, Y., Liu, W., et al., 2013. Studies on photocatalyticCO2reduction overNH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry. 19(42): 14279–14285.

Yaghi, O.M., Keeffe, O.M., Chae, H. K., et al., 2003. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science.423(5620):705-714.

Yaghi, O.M., Park, K.S., Ni, Z., et al., 2006. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of The United State America. 103(27): 10186-10191.