Tran Vo Hai Duong * , Dao Thi The and Nguyen Khoi Nghia

* Corresponding author (tvhduong@nomail.com)

Abstract

The objective of this study was to evaluate the efficiency of five isolated silicate solubilizing bacteria on germination rate, growth and biomass of rice under the condition supplemented with and without NaCl. The five highly isolated silicate solubilizing bacteria including Ochrobactrum ciceri TCM_39 (TCM_39), Microbacterium neimengense MCM_15 (MCM_15), Klebsiella aerogenes LCT_01 (LCT_01), Olivibacter jilunii PTST_30 (PTST_30) and Citrobacter freundii RTTV_12 (RTTV_12) were tested with rice cultivar IR50404 in Hoagland medium. The results showed that two bacterial strains, LCT_01 and RTTV_12 supported to have a higher rate of germination of rice seeds with 94.7% and 92.0%, respectively as compared to that of the control treatment. Besides, in the experimental set with Hoagland medium containing no NaCl and 0.3% NaCl, the treatments with TCM_39 and PTST_30 obtained the highest total of rice dry biomass of 13.4 mg and 13.8 mg as compared to that of the control treatment.
Keywords: IR50404 rice variety, NaCl, salinity tolerance, silicate solubilizing bacteria, soluble silicon

Tóm tắt

Mục tiêu của nghiên cứu nhằm đánh giá hiệu quả của 5 dòng vi khuẩn hòa tan khoáng silic (Si) lên nảy mầm và sinh trưởng lúa ở điều kiện có và không có NaCl. Năm dòng vi khuẩn hòa tan khoáng silic gồm: Ochrobactrum ciceri TCM_39 (TCM_39), Microbacterium neimengense MCM_15 (MCM_15), Klebsiella aerogenes LCT_01 (LCT_01), Olivibacter jilunii PTST_30 (PTST_30) và Citrobacter freundii RTTV_12 (RTTV_12) được thử nghiệm với giống lúa IR50404 trong môi trường Hoagland. Kết quả cho thấy hai dòng vi khuẩn LCT_01 và RTTV_12 giúp tăng tỉ lệ này mầm, lần lượt đạt 94,7% và 92,0 %, cao hơn và khác biệt thống kê so với đối chứng. Ngoài ra, ở điều kiện không và có bổ sung 0,3% NaCl hai dòng TCM_39 và PTST_30 lần lượt cho tổng sinh khối lớn nhất đạt 13,4 mg  và 13,8 mg so với nghiệm thức đối chứng.
Từ khóa: Chịu mặn, giống lúa IR50404, NaCl, silic hòa tan, vi khuẩn hòa tan khoáng silic

Article Details

References

Ahmad, R., Zaheer, S. H.,and Ismail, S., 1992. Role of silic in salt tolerance of wheat (Triticum aestivum L.). Plant Science. 85(1): 43-50.

Bazilevich, N. I., 1993. The Biological productivity of North Eurasian ecosystems. RAS Institute of Geography, Nayka, Moscow.

Delshadi, S., Ebrahimi, M., and Shirmohammadi, E., 2017. Influence of plant-growth-promoting bacteria on germination, growth and nutrient’s uptake of Onobrychis sativa L. under drought stress. Journal of Plant Interactions. 12(1): 200-208.

Gossett, D. R., Millhollon, E. P., and Lucas, M. C., 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science. 34(3): 706-714.

Hashemi, A., Abdolzadeh, A., and Sadeghipour, H. R., 2010. Beneficial effects of silic nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition. 56(2): 244-253.

Hoagland, D. R., and Arnon, D. I., 1938. The water-culture method for growing plants without soil. Circular 347, University of California, College of Agriculture, Berkeley.

Imran, A., Mirza, M. S., Shah, T. M., Malik, K. A., and Hafeez, F. Y., 2015. Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Frontiers in Microbiology. 6: 1-14.

Liang, Y., 1999. Effects of silic on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil. 209(2): 217-224.

Liang, Y., Hua, H., Zhu, Y. G., Zhang, J., Cheng, C., and Romheld, V., 2006. Importance of plant species and external silic concentration to active silic uptake and transport. New Phytologist. 172(1): 63-72.

Liang, Y., Shen, Q., Shen, Z., and Ma, T., 1996. Effects of silic on salinity tolerance of two barley cultivars. Journal of Plant Nutrition. 19(1): 173-183.

Ma, J. F., 2003. Function of silicon in higher plants. Prog. Mol. Subcell Biology. 33:127- 147.

Ma, J. F., 2004. Role of silic in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition. 50(1): 11-18.

Ma, J., and Takahashi, E., 2002. Soil, Fertilizer, and Plant Silic Research in Japan. Elsevier, Amsterdam, The Netherlands.

Maksimovic, J. D., Bogdanovic, J., Maksimovic, V., and Nikolic, M., 2007. Silic modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excessmanganese. Journal of PlantNutrition and Soil Science. 170(6): 739-744.

Matoh, T., Kairusmee, P., and Takahashi, E., 1986. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Science and Plant Nutrition. 32(2): 295-304.

Meneguzzo, S., Navari-Izzo, F., and Izzo, R., 1999. Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. Journal of Plant Physiology. 155(2): 274-280.

Navarro-Noya, Y. E., Martínez-Romero, E., and Hernández-Rodriguez, C., 2013. Potential plant-growth-promoting and nitrogen-fixing bacteria asociated with pioneer plants growing on mine tailings. Molecular Microbial Ecology of the Rhizosphere. 2: 1003-1011.

Saqib, M., Zorb, C., and Schubert, S., 2008. Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology. 35(7): 633-639.

Shalata, A., and Tal, M., 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 104: 167-174.

Soylemezoglu, G., Demir, K., Inal, A., and Gunes, A., 2009. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae. 123(2): 240-246.

Tanaka, M., and Takahashi, K., 2000. Charaterization of silica dissolved in sodium chloride solution using fast atom bombardment mass spectrometry. J. Mass Spectro. 35(7): 853-859.

Toribio-Jiménez, J., Rodríguez-Barrera, M. A., Hernández-Flores, G., Ruvacaba-Ledezma, J. C., Castellanos-Escamilla, M., and Romero-Ramirez, Y., 2017. Isolation and screening of bacteria from Zea mays plant growth promoters. Rev. Int. Contam. Ambie. 33: 143-150.

Trần Võ Hải Đường và Nguyễn Khởi Nghĩa, 2018. Phân lập và tuyển chọn vi khuẩn hòa tan khoáng silic từ nhiều môi trường sống khác nhau. Tạp chí Khoa học & Công nghệ Trường Đại Học Thái Nguyên. 180(4): 9-14.

van der Vorm, P. D. J., 1980. Uptake of Si by five plant species as influenced by variations in Si-supply. Plant Soil. 56:153-156.

Yeo, A. R., Flowers, S. A., Rao, G., Welfare, K., Senanayake, N., and Flowers, T. J., 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment. 22(5): 559-565.

Yoshida, S., 1975. The physiology of silicon in rice. Food Fertilizer Tech. Centre Technical Bull.