Ngo Quang Hieu *

* Corresponding author (nqhieu@ctu.edu.vn)

Abstract

In this paper, an anti-sway control scheme for a container crane that is used for vessel-to-truck and truck-to-vessel loading and unloading of containers at a container terminal is investigated. The control objectives are to move a container to a desired position and to suppress its transverse vibration produced by trolley motion in the presence of the friction force and the control input saturation. In this study, friction coefficients are estimated using the recursive least squares (RLS) method, and the friction force is incorporated into a nonlinear control law. The designed control input for control of the trolley motion is modified to satisfy the saturation condition of the actuator (electrical motor). The nonlinear control law guarantees the asymptotical stability of the closed-loop system. Simulation and experimental results verify the efficiency of the proposed algorithm.
Keywords: Anti-sway control, Friction estimation, Recursive least squares method

Tóm tắt

Trong bài báo này, một phương thức điều khiển chống lắc cho cần cẩu container đang được sử dụng để vận chuyển container tại các cảng container được phát triển. Mục tiêu điều khiển là di chuyển container đến vị trí mong muốn và ngăn chặn việc dao động ngang của container trong quá trình di chuyển với sự tồn tại của lực ma sát. Trong nghiên cứu này, hệ số ma sát được ước tính bằng phương pháp bình phương cực tiểu hồi qui (RLS), và lực ma sát được tích hợp trong luật điều khiển phi tuyến. Luật điều khiển phi tuyến đảm bảo sự ổn định tiệm cận của hệ điều khiển vòng kín. Kết quả mô phỏng và thực nghiệm xác nhận tín hiệu quả của thuật toán đề xuất.
Từ khóa: Điều khiển chống lắc, ước lượng ma sát, phương pháp bình phương cực tiểu hồi qui

Article Details

References

Al-Garni, A. Z., Moustafa, K. A. F., & Javeed Nizami, S. S. A. K. (1995). Optimal control of ovehead cranes. Control Engineering Practice, 3(9), 1277-1284.

Almutairi, N. B. & Zribi, M. (2009). Sliding mode control of a three-dimensional overhead crane. Journal of Vibration and Control, 15(11), 1679-1730.

Aström, K. J., & Wittenmark, B. (1994). Adaptive control, Addison-Wesley, 2nd ed.

Bartolini, G., Pisano, A., & Usai, E. (2002). Second-order sliding-mode control of container cranes. Automatica, 38(10), 1783-1790.

Benhidjeb, A., & Gissinger, G. L. (1995). Fuzzy control of an overhead crane performance comparison with classical control. Control Engineering Practice, 3(12), 1687-1696.

Blackburn, D., Lawrence, J., Danielson, J., Singhose, W., Kamoi, T., & Taura, A. (2010). Radial-motion assisted command shapers for nonlinear tower crane rotational slewing. Control Engineering Practice, In press.

Chang, C. Y., & Chiang, K. H. (2008). Fuzzy projection control law and its application to the overhead crane. Mechatronics, 18(10), 607-615.

Cheng, C. C., & Chen, C. Y. (1996). Controller design for an overhead crane system with uncertainty. Control Engineering Practice, 4(5), 645-653.

d’Andrea-Novel, B., & J. M. Coron. (2000). Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica, 36(4), 587-593.

Hong, K. T., Huh, C. D.,&Hong, K.-S. (2003). Command shaping control for limiting the transient sway angle of crane systems. International Journal of Control, Automation, and Systems, 1(1), 43-53.

Hong, K.-S., Park, B. J.,& Lee, M. H. (2000). Two-stage control for container cranes. JSME International Journal, Series C, 43(2), 273-282.

Hua, Y. J., & Shine, Y. K. (2007). Adaptive coupling control for overhead crane systems. Mechatronics, 17(2-3), 143-152.

Huey, J. R., Sorensen, K. L., & Singhose, W. (2008). Useful applications of closed-loop signal shaping controllers. Control Engineering Practice, 16 (7), 836-846.

Kim, C. S., & Hong, K.-S. (2009). Boundary control of container cranes from perspective of controlling an axially moving string system.International Journal of Control, Automation, and Systems, 7(3), 437-445.

Kim, Y. S., Hong, K.-S.,& Sul, S. K. (2004). Anti-sway control of container cranes: inclinometer, observer, and state feedback. International Journal of Control, Automation, and Systems, 2(4), 435-449.

Klosinski, J. (2005). Swing-free stop control of the slewing motion of a mobile crane. Control Engineering Practice, 13, 451-460.

Liu, D., Yi, J., Zhao, D., & Wang, W. (2005). Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics, 15(5), 505-522.

Lu, L., Yao, B., Wang, Q., & Chen, Z. (2009). Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model. Automatica, 45(12), 2890-2896.

Messineo, S., Celani, F., & Egeland, O. (2008). Crane feedback control in offshore moonpool operations. Control Engineering Practice, 16(3), 356-364.

Messineo, S., & Serrani, A. (2009). Offshore crane control based on adaptive external models. Automatica, 45(11), 2546-2556.

Mizumoto, I., Chen, T., Ohdaira, S., Kumon, M., & Iwai, Z. (2007). Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system, Automatica, 43(12), 2077-2085.

Ngo, Q. H., Hong, K.-S., & Jung, I. H. (2009). Adaptive control of an axially moving system. Journal of Mechanical Science and Technology, 23(11), 3071-3078.

Olsson, H., Aström, K. J., Canudas de Wit, C., Gäfvert, M., & Lischinsky, P. (1998). Friction models and friction compensation. European Journal of Control, 4(3), 176-195.

Park, H., Chwa, D., & Hong, K.-S. (2007). A feedback linearization control of container cranes: varying rope length. International Journal of Control, Automation, and Systems, 5(4), 379-387.

Sawodny, O., Aschemann, H., & Lahres, S. (2002). An automated gantry crane as a large workspace robot. Control Engineering Practice, 10(12), 1323-1338.

Singhose, W., Perter, L., Kenison, M., & Krrikku, E. (2000). Effects of hoisting on the input shaping control of gantry cranes. Control Engineering Practice, 8(10), 1159-1165.

Sorensen, K. L. & Singhose, W. (2008). Command-induced vibration analysis using input shaping principles. Automatica, 44(9), 2392-2397.

Sorensen, K.L., Singhose, W., & Dickerson, S. (2007). A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Engineering Practice, 15(7), 825-837.

Sung, Y. G., & Singhose, W. (2009). Limited-state commands for systems with two flexible modes. Mechatronics, 19(5), 780-787.

Terashima, K., Shen, Y., & Yano, K. (2007). Modeling and optimal control of a rotary crane using the straight transfer transformation method. Control Engineering Practice, 15(9), 1179-1192.