Doan Van Hong Thien * , Le Duc Duy , Nguyen Minh Nhut , Pham Thi Me and Pham Hoa Thai

* Corresponding author (dvhthien@ctu.edu.vn)

Abstract

Rice husk ash was obtained after burning of rice husk in the air. The rice husk ash was then calcinated at 650oC for 1 hour to produce activated rice-husk ash (RHA). The main composition of RHA was is activated silica which can be used to remove Cu(II) ions by batch adsorption method. The IR spectra, XRD patterns, SEM images and BET adsorption were used to determine the silica structural composition and characteristics of RHA. In this research, The RHA was applied for the removal of Cu(II) ions using by anbatch adsorption method. The batch adsorption was used in this research. The factors affecting the absorption of Cu(II) ions under investigation includedeffects of the main parameters were investigated, including: pH, adsorbent amounts, contact time and the initial concentration of Cu(II). The maximum adsorbtion capacity of RHA for Cu (II) ions was 4,1 mg/g.
Keywords: Rice husk ash, absorption, Cu(II) ions

Tóm tắt

Vỏ trấu được đốt cháy ngoài không khí, sau đó sản phẩm được nung trong lò nung ở nhiệt độ 650oC trong thời gian 1 giờ. Sản phẩm tro trấu (RHA) thu được chứa nhiều silica tinh thể và được ứng dụng cho việc loại bỏ ion Cu(II) bằng phương pháp hấp phụ. Các phương pháp phân tích phổ hồng ngoại (FTIR), phổ nhiễu xạ tia X (XRD), ảnh dưới kính hiển vi điện tử quét (SEM) và hấp phụ BET được sử dụng để xác định thành phần cấu trúc silica trong RHA và các đặc tính của RHA. Bể hấp phụ gián đoạn được tiến hành để khảo sát khả năng loại bỏ ion Cu (II) trong nghiên cứu này. Các yếu tố ảnh hưởng đến quá trình hấp phụ được khảo sát gồm có: pH, lượng chất hấp phụ, thời gian tiếp xúc và nồng độ đầu của ion Cu(II). Dung lượng hấp phụ cực đại của RHA đối với ion Cu(II) là 4,1 mg/g.
Từ khóa: Tro trấu, hấp phụ, ion Cu(II)

Article Details

References

Bogdanov, B., I. Markovska, Y. Hristov and D. Georgiev, 2012. Lightweight Materials Obtained by Utilization of Agricultural Waste. Proceedings of World Academy of Science, Engineering and Technology: 725-728.

Brewer, G. J., 2009. Risks of copper and iron toxicity during aging in humans. Chemical research in toxicology: 319-326.

Chungsangunsit, T., S. H. Gheewala and S. Patumsawad, 2009. Emission assessment of rice husk combustion for power production. World Acad Sci Eng Technol: 1070-5.

Daud, N. and B. Hameed, 2010. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst. Journal of Hazardous Materials: 938-944.

Della, V., I. Kühn and D. Hotza, 2002. Rice husk ash as an alternate source for active silica production. Materials Letters: 818-821.

El-Said, A., N. Badawy and S. Garamon, 2010. Adsorption of cadmium (II) and mercury (II) onto natural adsorbent rice husk ash (RHA) from aqueous solutions: Study in single and binary system. J. Am. Sci: 400-409.

Farooq, U., J. A. Kozinski, M. A. Khan and M. Athar, 2010. Biosorption of heavy metal ions using wheat based biosorbents–A review of the recent literature. Bioresource technology: 5043-5053.

Gupta, V. K., 1998. Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & engineering chemistry research: 192-202.

Iqbal, M. A. and S. Gupta, 2009. Studies on heavy metal ion pollution of ground water sources as an effect of municipal solid waste dumping. African Journal of Basic and Applied Sciences: 117-122.

Johan, N., S. Kutty, M. Isa, N. Muhamad, et al., 2011. Adsorption of copper by using microwave incinerated rice husk ash (MIRHA). Int J Civil Environ Eng: 211-215.

Kalapathy, U., A. Proctor and J. Shultz, 2000. A simple method for production of pure silica from rice hull ash. Bioresource technology: 257-262.

Mahvi, A., A. Maleki and A. Eslami, 2004. Potential of rice husk and rice husk ash for phenol removal in aqueous systems. American Journal of Applied Sciences: 321-326.

Maksymiec, W., 1998. Effect of copper on cellular processes in higher plants. Photosynthetica: 321-342.

Mance, G., 1987. Pollution threat of heavy metals in aquatic environments. 372 pages.

Manique, M. C., C. S. Faccini, B. Onorevoli, E. V. Benvenutti, et al., 2012. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel: 56-61.

Momodu, M. and C. Anyakora, 2010. Heavy metal contamination of ground water: The Surulere case study. Res. J. Environ. Earth Sci: 39-43.

Ngo, S. P., 2006. Production of amorphous silica from rice husk in fluidised bed system. Universiti Teknologi Malaysia, Faculty of Chemical Engineering and Natural Resources Engineering.

Patel, M., A. Karera and P. Prasanna, 1987. Effect of thermal and chemical treatments on carbon and silica contents in rice husk. Journal of materials science: 2457-2464.

Ramzanianpour, A., M. Mahdikhani and G. Ahmadibeni, 2009. The effect of rice husk ash on mechanical properties and durability of sustainable concretes. International Journal of Civil Engineering: 83-91.

Stallons, J. M. and E. Iglesia, 2001. Simulations of the structure and properties of amorphous silica surfaces. Chemical engineering science: 4205-4216.

Xiong, L., E. H. Sekiya, P. Sujaridworakun, S. Wada, et al., 2009. Burning temperature dependence of rice husk ashes in structure and property. Journal of Metals, Materials and Minerals: 95-99.