Đặng Long Quân * , Huỳnh Hoàng Phương , Hà Thư Hoàng , Nguyễn Thị Ngọc Yến , Nguyễn Thị Tú Quyên , Nguyễn Đăng Khoa , Nguyễn Lê Khả Ái Phan Trần Anh Thy

* Tác giả liên hệ (dlquan@ctu.edu.vn)

Abstract

In this study, the adsorption of carbon monoxide (CO) on the surface of platinum (Pt) and platinum-ruthenium alloy (PtRu) nanoparticles was investigated by simulation using density functional theory (DFT) and cyclic voltammetry (CV) measurement. The simulation results show that the adsorption energies of CO on Pt and PtRu surfaces are -2.03 and -1.86 eV, respectively. This proves that the CO molecule adsorbed on the Pt surface more strongly than on the PtRu surface. The results of CV measurement also show that the jf/jr ratio of PtRu (7.2) is 2.9 times higher than that of Pt (2.5). This once again confirms that adding ruthenium to platinum will help increase the resistance to CO tolerance. Furthermore, the experimental results are also completely consistent with the simulation results.

Keywords: Carbon monoxide, PtRu nanoparticles, simulation, cyclic voltammetry

Tóm tắt

Trong nghiên cứu này, sự hấp phụ của carbon monoxide (CO) lên bề mặt hạt nano platinum (Pt) và hạt nano hợp kim platinum-ruthenium (PtRu) được khảo sát bằng mô phỏng sử dụng lý thuyết phiếm hàm mật độ (DFT) và thực nghiệm đo thế vòng tuần hoàn (CV). Kết quả mô phỏng cho thấy năng lượng hấp phụ của CO trên bề mặt Pt và PtRu lần lượt là -2,03 và -1,86 eV. Điều này chứng tỏ phân tử CO hấp phụ trên bề mặt Pt mạnh hơn trên bề mặt PtRu. Kết quả đo CV của hai loại xúc tác trong dung dịch methanol-sulfuric acid cũng cho thấy tỷ số jf/jr của PtRu (7,2) cao hơn 2,9 lần so với Pt (2,5). Điều này một lần nữa khẳng định, khi thêm kim loại ruthenium vào platinum sẽ giúp tăng khả năng kháng ngộ độc CO của chất xúc tác. Đồng thời, kết quả thực nghiệm cũng hoàn toàn phù hợp với kết quả mô phỏng.

Từ khóa: Carbon monoxide, hạt nano PtRu, mô phỏng, quét thế vòng tuần hoàn

Article Details

Tài liệu tham khảo

Antolini, E. (2003). Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Materials chemistry and physics, 78(3), 563-573.
https://doi.org/10.1016/S0254-0584(02)00389-9

Chen, T. Y., Luo, T. J. M., Yang, Y. W., Wei, Y. C., Wang, K. W., Lin, T. L., Wen, T. C., & Lee, C. H. (2012). Core dominated surface activity of core–shell nanocatalysts on methanol electrooxidation. The Journal of Physical Chemistry C, 116(32), 16969-16978. https://doi.org/10.1021/jp3017419

Figueiredo, M. C., Melander, M., Solla-Gullón, J., Kallio, T., & Laasonen, K. (2014). Bismuth and CO coadsorption on platinum nanoparticles. The Journal of Physical Chemistry C, 118(40), 23100-23110.
https://doi.org/10.1021/jp5063513

Greeley, J., & Mavrikakis, M. (2002). A first-principles study of methanol decomposition on Pt (111). Journal of the American Chemical Society, 124(24), 7193-7201.
https://doi.org/10.1021/ja017818k

Hsieh, C. T., Lin, J. Y., & Yang, S. Y. (2009). Carbon nanotubes embedded with PtRu nanoparticles as methanol fuel cell electrocatalysts. Physica E, 41(3), 373-378. https://doi.org/10.1016/j.physe.2008.08.060

Jang, J. H., Lee, E., Park, J., Kim, G., Hong, S., & Kwon, Y. U. (2013). Rational syntheses of core-shell Fex@Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction. Scientific reports, 3(1), 1-8. https://doi.org/10.1038/srep02872

Jin, X., Zeng, C., Yan, W., Zhao, M., Bobba, P., Shi, H., Thapa, P. S., Subramaniam, B., & Chaudhari, R. V. (2017). Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A, 534, 46-57. https://doi.org/10.1016/j.apcata.2017.01.021

Kaewsai, D., & Hunsom, M. (2018). Comparative study of the ORR activity and stability of Pt and PtM (M= Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotubes in a PEM fuel cell. Nanomaterials, 8(5), 299. https://doi.org/10.3390/nano8050299

Kamali, A. R., Schwandt, C., & Fray, D. J. (2011). Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Materials characterization, 62(10), 987-994. https://doi.org/10.1016/j.matchar.2011.06.010

Kramer, Z. C., Gu, X. K., Zhou, D. D., Li, W. X., & Skodje, R. T. (2014). Following molecules through reactive networks: Surface catalyzed decomposition of methanol on Pd(111), Pt(111), and Ni(111). The Journal of Physical Chemistry C, 118(23), 12364-12383. https://doi.org/10.1021/jp503056u

Liu, Z., & Hong, L. (2007). Electrochemical characterization of the electrooxidation of methanol, ethanol and formic acid on Pt/C and PtRu/C electrodes. Journal of Applied Electrochemistry, 37, 505-510.
https://doi.org/10.1007/s10800-006-9282-0

Lu, L., Chen, S., Thota, S., Wang, X., Wang, Y., Zou, S., Fan, J., & Zhao, J. (2017). Composition controllable synthesis of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction. The Journal of Physical Chemistry C, 121(36), 19796-19806. https://doi.org/10.1021/acs.jpcc.7b05629

Ou, L. (2018). New insights into the Pt-catalyzed CH3OH oxidation mechanism: first-principle considerations on thermodynamics, kinetics, and reversible potentials. ACS omega, 3(1), 886-897.
https://doi.org/10.1021/acsomega.7b01725

Quan, D. L., & Le, P. H. (2021). Enhanced methanol oxidation activity of PtRu/C100− x MWCNTsx (x = 0–100 wt.%) by controlling the composition of C-MWCNTs support. Coatings, 11(5), 571. https://doi.org/10.3390/coatings11050571

Shah, M. A. (2012). Growth of uniform nanoparticles of platinum by an economical approach at relatively low temperature. Scientia Iranica, 19(3), 964-966. https://doi.org/10.1016/j.scient.2012.02.027

Suh, D. J., Kwak, C., Kim, J. H., Kwon, S. M., & Park, T. J. (2005). Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts. Journal of power sources, 142(1-2), 70-74. https://doi.org/10.1016/j.jpowsour.2004.09.012

Takasu, Y., Itaya, H., Iwazaki, T., Miyoshi, R., Ohnuma, T., Sugimoto, W., & Murakami, Y. (2001). Size effects of ultrafine Pt–Ru particles on the electrocatalytic oxidation of methanol. Chemical Communications, 4, 341-342. https://doi.org/10.1039/B008821H

Yamagishi, S., Fujimoto, T., Inada, Y., & Orita, H. (2005). Studies of CO adsorption on Pt (100), Pt (410), and Pt (110) surfaces using density functional theory. The Journal of Physical Chemistry B, 109(18), 8899-8908.
https://doi.org/10.1021/jp050722i