Ảnh hưởng của vi sóng và sóng siêu âm đến hiệu quả trích ly chất xơ từ vỏ xoài cát chu (Mangifera indica L.) bằng công nghệ enzyme
Abstract
A large amount of peels removed from the manufacturing process of mango products cause environmental pollution without proper treatment. This study aimed to analyze the material’s proximate compositions and properties and to obtain dietary fiber using enzyme-assisted extraction integrated with microwave (MEAE: 100÷500 W, 30÷90 s) or ultrasound (UEAE: 100÷220 W, 15 min). The results showed that Cat Chu mango peels mainly contained carbohydrates (74.13±0.47%), where there was 37.22±1.61% total dietary fiber (TDF), 11.64±1.34% soluble dietary fiber (SDF), and 25.55±0.78% insoluble dietary fiber (IDF). This material retained water and oil relatively well (7.55±0.07 and 1.64±0.08 g/g), but it isn't easy to dissolve (43.10±0.85%) and swell (2.50±0.00 mL/g). MEAE at 300 W for 90 s provided dietary fiber with a better recovery yield (18.39±0.32%) and components (71.63±1.22% TDF, 65.15±0.51% SDF and 6.48±0.70% IDF) than those of UEAE at 150 W for 15 min (17.67±0.27% yield, 64.53±0.39% TDF, 53.34±0.11% SDF and 11.18±0.5% IDF, respectively). In conclusion, Cat Chu mango peel is an abundant source of dietary fiber, which MEAE can effectively support to exploit.
Tóm tắt
Một lượng lớn vỏ loại bỏ khỏi quy trình sản xuất các sản phẩm từ xoài gây ô nhiễm môi trường khi không được xử lý hợp lý. Nghiên cứu này nhằm phân tích thành phần, đặc tính nguyên liệu và thu nhận chất xơ bằng trích ly hỗ trợ enzyme tích hợp vi sóng (MEAE: 100÷500 W, 30÷90 giây) hoặc sóng siêu âm (UEAE: 100÷220 W, 15 phút). Kết quả cho thấy vỏ xoài Cát Chu chủ yếu là carbohydrate (74,13±0,47%), trong đó có 37,22±1,61% chất xơ tổng số (TDF), 11,64±1,34% chất xơ hòa tan (SDF) và 25,55±0,78% chất xơ không hòa tan (IDF). Nguyên liệu giữ nước và dầu tương đối tốt (7,55±0,07 và 1,64±0,08 g/g) nhưng khó tan (43,10±0,85%) và trương nở (2,50±0,01 mL/g). MEAE ở 300 W trong 90 giây cho hiệu suất thu hồi (18,39±0,32%) và thành phần chất xơ (71,63±1,22% TDF, 65,15±0,51% SDF và 6,48±0,70% IDF) tốt hơn của UEAE ở 150 W trong 15 phút (17,67±0,27% hiệu suất, 64,53±0,39% TDF, 53,34±0,11% SDF và 11,18±0,5% IDF). Như vậy, vỏ xoài Cát Chu là nguồn giàu chất xơ mà MEAE hỗ trợ khai thác hiệu quả.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
AOAC. 2000. Official Methods of Analysis of AOAC International (17th edition). USA: Gaithersburg, MD.
Aziz, N. A., Wong, L. M., Bhat, R., & Cheng, L. H. (2012). Evaluation of processed green and ripe mango peel and pulp flours (Mangifera indica var. Chokanan) in terms of chemical composition, antioxidant compounds and functional properties. Journal of the Science of Food and Agriculture, 92(3), 557-563. https://doi.org/10.1002/jsfa.4606
Bagherian, H., Ashtiani, F. Z., Fouladitajar, A., & Mohtashamy, M. (2011). Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical engineering and processing: Process Intensification, 50(11-12), 1237-1243. https://doi.org/10.1016/j.cep.2011.08.002
Brecht, J. K., & Sidhu, J. S. (Eds.). (2017). Handbook of mango fruit: Production, postharvest science, processing technology and nutrition. John Wiley & Sons.
Dong, W., Wang, D., Hu, R., Long, Y., & Lv, L. (2020). Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Research International, 136, 109497. https://doi.org/10.1016/j.foodres.2020.109497
FAO. (2021). Major tropical fruits - statistical compendium 2020. Rome.
Gan, P. G., Sam, S. T., Abdullah, M. F., Omar, M. F., & Tan, L. S. (2020). An alkaline deep eutectic solvent based on potassium carbonate and glycerol as pretreatment for the isolation of cellulose nanocrystals from empty fruit bunch. BioResources, 15(1), 1154–1170.
Kaur, B., Panesar, P. S., & Thakur, A. (2021). Extraction and evaluation of structural and physicochemical properties of dietary fiber concentrate from mango peels by using green approach. Biomass Conversion and Biorefinery, 1-10.
Larrauri, J. A., Rupérez, P., Borroto, B., & Saura-Calixto, F. (1996). Mango peels as a new tropical fibre: Preparation and characterization. LWT-Food Science and Technology, 29(8), 729-733. https://doi.org/10.1006/fstl.1996.0113
Li, X., He, X., Lv, Y., & He, Q. (2014). Extraction and functional properties of water‐soluble dietary fiber from apple pomace. Journal of Food Process Engineering, 37, 293-298. https://doi.org/10.1111/jfpe.12085
MARD (2021). Vietnam is the 13th biggest mango producer in the world. https://www.mard.gov.vn/en/Pages/vietnam-is-the-13th-biggest mango-producer-in-the-world.aspx. Truy cập ngày 11/07/2021.
Onuh, J. O., Momoh, G., Egwujeh, S., & Onuh, F. (2017). Evaluation of the nutritional, phytochemical and antioxidant properties of the peels of some selected mango varieties. American Journal of Food Science and Technology, 5(5), 176-181. DOI:10.12691/ajfst-5-5-2
Sanchez-Camargo, A. del P., Gutiérrez, L. F., Vargas, S. M., Martinez-Correa, H. A., Parada-Alfonso, F., & Narváez-Cuenca, C. E. (2019). Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. Journal of Supercritical Fluids, 152. https://doi.org/10.1016/j.supflu.2019.104574
Schneeman, B. O. (1987). Soluble vs insoluble fiber: different physiological responses. Food Technology, 41.
Serna-Cock, L., García-Gonzales, E., & Torres-León, C. (2016). Agro-industrial potential of the mango peel based on its nutritional and functional properties. Food Reviews International, 32(4), 364-376. https://doi.org/10.1080/87559129.2015.1094815
Sommano, S. R., Ounamornmas, P., Nisoa, M., Sriwattana, S., Page, P., & Colelli, G. (2018). Characterisation and physiochemical properties of mango peel pectin extracted by conventional and phase control microwave-assisted extractions. International Food Research Journal, 25(6), 2657–2665.
Tejada-Ortigoza, V., Garcia-Amezquita, L. E., Serna-Saldívar, S. O., & Welti-Chanes, J. (2016). Advances in the functional characterization and extraction processes of dietary fiber. Food Engineering Reviews, 8(3), 251–271.
Umbreen, H., Arshad, M. U., Saeed, F., Bhatty, N., & Hussain, A. I. (2015). Probing the functional potential of agro‐industrial wastes in dietary interventions. Journal of Food Processing and Preservation, 39(6), 1665-1671. https://doi.org/10.1111/jfpp.12396
Wang, M., Huang, B., Fan, C., Zhao, K., Hu, H., Xu, X., Pan, S., & Liu, F. (2016). Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid. International Journal of Biological Macromolecules, 91, 794–803. https://doi.org/10.1016/j.ijbiomac.2016.06.011
Wei, W., Shao, Z., Zhang, Y., Qiao, R., & Gao, J. (2019). Fundamentals and applications of microwave energy in rock and concrete processing - A review. Applied Thermal Engineering, 157, 113751. https://doi.org/10.1016/j.applthermaleng.2019.113751
Xu, F., Zhang, S., Zhou, T., Waterhouse, G. I. N., Du, Y., Sun-Waterhouse, D., & Wu, P. (2022). Green approaches for dietary fibre-rich polysaccharide production from the cooking liquid of Adzuki beans: Enzymatic extraction combined with ultrasonic or high-pressure homogenisation. Food Hydrocolloids, 130. https://doi.org/10.1016/j.foodhyd.2022.107679