Phan Nguyễn Đức Dược , Trần Văn Hậu , Bùi Thúc Minh , Phan Nhật Nguyên , Nguyen Thị Hương Phan Văn Cường *

* Tác giả liên hệ (cuongpv@ntu.edu.vn)

Abstract

In this work, graphene (GR) materials were fabricated from natural graphite rods via electrochemical exfoliated approaches with different voltages applied to electrodes, such as constant voltages 6 V, 8 V, 10 V, and staircase potential 0-2 V and 2-10 V in ammonium sulfate (NH4)2SO4 solution. The products were characterized by Zeta potential, field emission-scanning electron microscope (FE-SEM), atomic force microscopy (AFM), and Raman spectroscope (Raman) to examine the characterization and structure of GR. Zeta potential of GR-010 with staircase potential 0-10 V is -47.7 mV, showing the effective dispersion of GR in water due to excellent linked ability with negative ions at the surface and boundary of GR. FE-SEM and AFM images show that the average thickness of GR-010 is 1.8 nm corresponding to 3-5 single-layers, respectively, less than Gr-6, GR-8, and GR-10. Raman image of GR shows that the defect level of GR-010 is lower than GR-6, GR-8, and GR-10 with ratio ID/IG = 0.36.

Keywords: Electrochemistry, exfoliation, graphene, staircase potential

Tóm tắt

Trong nghiên cứu này, vật liệu graphene (GR) được chế tạo từ thanh graphite sử dụng phương pháp bóc tách điện hóa với các loại điện áp khác nhau đặt vào hai đầu điện cực, bao gồm các điện áp không đổi 6 V, 8 V, 10 V và kỹ thuật thế bậc thang hai giai đoạn từ 0-2 V và 2-10 V trong môi trường ammonium sulfate (NH4)2SO4. Kết quả chế tạo đã được khảo sát bằng các phép đo thế Zeta, kính hiển vi điện tử quét phát xạ trường (FE-SEM), kính hiển vi lực nguyên tử (AFM) và quang phổ Raman để xác định đặc trưng và cấu trúc của vật liệu GR. Thế Zeta thu được của GR-010 có giá trị -47,7 mV cho thấy hiệu quả phân tán trong môi trường nước, hiệu quả này do khả năng liên kết tốt với các ion âm ở bề mặt và biên của GR. Kết quả đo SEM và AFM cũng chỉ ra bề dày trung bình của các tấm GR-010 thu được vào cỡ 1,8 nm tương ứng 3-5 lớp GR, nhỏ hơn so với các mẫu GR-6, GR-8 và GR-10 tương ứng với các điện áp 6 V, 8 V và 10 V. Kết quả phân tích Raman cũng cho thấy mức độ sai hỏng của GR-010 thấp hơn so với GR-6, GR-8 và GR-10  với tỷ số ID/IG = 0,36.

Từ khóa: Bóc tách, điện hóa, graphene, thế bậc thang

Article Details

Tài liệu tham khảo

Achee, T. C., Sun, W., Hope, J. T., Quitzau, S. G., Sweeney, C. B., Shah, S. A., Habib, T., & Green, M. J. (2018a). High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports, 8(1), 14525. https://doi.org/10.1038/s41598-018-32741-3

Achee, T. C., Sun, W., Hope, J. T., Quitzau, S. G., Sweeney, C. B., Shah, S. A., Habib, T., & Green, M. J. (2018b). High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports, 8(1), 14525. https://doi.org/10.1038/s41598-018-32741-3

Chen, K., Xue, D., & Komarneni, S. (2017). Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode. Journal of Colloid and Interface Science, 487, 156–161. https://doi.org/10.1016/j.jcis.2016.10.028

Phan, N. D. D., Nguyen, H. B., Tran, V. H., Cao, T. T., Pham, V. T., , V. T., Nguyen, V. Q., Nguyen, V. T., Vu, D. C., Vu, T. T., Pham, D. T., Phan, N. M., & Nguyen, V. C. (2020). A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection. Journal of Hazardous Materials, 400, 123185. https://doi.org/10.1016/j.jhazmat.2020.123185

Eredia, M., Bertolazzi, S., Leydecker, T., El Garah, M., Janica, I., Melinte, G., Ersen, O., Ciesielski, A., & Samorì, P. (2017). Morphology and Electronic Properties of Electrochemically Exfoliated Graphene. The Journal of Physical Chemistry Letters, 8(14), 3347–3355. https://doi.org/10.1021/acs.jpclett.7b01301

Fang, S., Lin, Y., & Hu, Y. H. (2019). Recent Advances in Green, Safe, and Fast Production of Graphene Oxide via Electrochemical Approaches. ACS Sustainable Chemistry & Engineering, 7(15), 12671–12681. https://doi.org/10.1021/acssuschemeng.9b02794

Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235–246. https://doi.org/10.1038/nnano.2013.46

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18), 187401. https://doi.org/10.1103/PhysRevLett.97.187401

Gurzęda, B., Buchwald, T., Nocuń, M., Bąkowicz, A., & Krawczyk, P. (2017). Graphene material preparation through thermal treatment of graphite oxide electrochemically synthesized in aqueous sulfuric acid. RSC Advances, 7(32), 19904–19911. https://doi.org/10.1039/C7RA01678F

Konkena, B., & Vasudevan, S. (2012). Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through p K a Measurements. The Journal of Physical Chemistry Letters, 3(7), 867–872. https://doi.org/10.1021/jz300236w

Kovtun, A., Treossi, E., Mirotta, N., Scidà, A., Liscio, A., Christian, M., Valorosi, F., Boschi, A., Young, R. J., Galiotis, C., Kinloch, I. A., Morandi, V., & Palermo, V. (2019). Benchmarking of graphene-based materials: Real commercial products versus ideal graphene. 2D Materials, 6(2), 025006. https://doi.org/10.1088/2053-1583/aafc6e

Li, L., Wang, M., Guo, J., Cao, M., Qiu, H., Dai, L., & Yang, Z. (2018). Regulation of radicals from electrochemical exfoliation of a double-graphite electrode to fabricate high-quality graphene. Journal of Materials Chemistry C, 6(23), 6257–6263.
https://doi.org/10.1039/C8TC01565A

Liu, F., Wang, C., Sui, X., Riaz, M. A., Xu, M., Wei, L., & Chen, Y. (2019). Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy, 1(2), 173–199.
https://doi.org/10.1002/cey2.14

Marković, Z. M., Budimir, M. D., Kepić, D. P., Holclajtner-Antunović, I. D., Marinović-Cincović, M. T., Dramićanin, M. D., Spasojević, V. D., Peruško, D. B., Špitalský, Z., Mičušik, M., Pavlović, V. B., & Todorović-Marković, B. M. (2016). Semi-transparent, conductive thin films of electrochemical exfoliated graphene. RSC Advances, 6(45), 39275–39283. https://doi.org/10.1039/C6RA04250C

Miao, F., Majee, S., Song, M., Zhao, J., Zhang, S.-L., & Zhang, Z.-B. (2016). Inkjet printing of electrochemically-exfoliated graphene nano-platelets. Synthetic Metals, 220, 318–322. https://doi.org/10.1016/j.synthmet.2016.06.029

Nirmala, N., Shriniti, V., Aasresha, K., Arun, J., Gopinath, K. P., Dawn, S. S., Sheeladevi, A., Priyadharsini, P., Birindhadevi, K., Chi, N. T. L., & Pugazhendhi, A. (2022). Removal of toxic metals from wastewater environment by graphene-based composites: A review on isotherm and kinetic models, recent trends, challenges and future directions. Science of The Total Environment, 840, 156564. https://doi.org/10.1016/j.scitotenv.2022.156564

Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., & Müllen, K. (2014). Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. Journal of the American Chemical Society, 136(16), 6083–6091. https://doi.org/10.1021/ja5017156

Phan, N. D. D., Nguyen, N. D., Tran, V. H., Nguyen, T. T., & Nguyen, V. H. (2017). Functional integral method in quantum field theory of Dirac fermions in graphene. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3), 035018. https://doi.org/10.1088/2043-6254/aa7249

Phan, N. D. D., & Tran, V. H. (2017). Functional integral method in quantum field theory of plasmons in graphene. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4), 045017. https://doi.org/10.1088/2043-6254/aa92bd

Pingale, A. D., Owhal, A., Katarkar, A. S., Belgamwar, S. U., & Rathore, J. S. (2021). Facile synthesis of graphene by ultrasonic-assisted electrochemical exfoliation of graphite. Materials Today: Proceedings, 44, 467–472. https://doi.org/10.1016/j.matpr.2020.10.045

Kumar, M. K. P., Shanthini, S., & Srivastava, C. (2015). Electrochemical exfoliation of graphite for producing graphene using saccharin. RSC Advances, 5(66), 53865–53869. https://doi.org/10.1039/C5RA07846F

Sevilla, M., Ferrero, G. A., & Fuertes, A. B. (2016). Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. Chemistry - A European Journal, 22(48), 17351–17358. https://doi.org/10.1002/chem.201603321

Sharif, F., Zeraati, A. S., Ganjeh-Anzabi, P., Yasri, N., Perez-Page, M., Holmes, S. M., Sundararaj, U., Trifkovic, M., & Roberts, E. P. L. (2020). Synthesis of a high-temperature stable electrochemically exfoliated graphene. Carbon, 157, 681–692. https://doi.org/10.1016/j.carbon.2019.10.042

Cao, T. T., Phan, N. D. D, Nguyen, T. H., Vu, T. T., Nguyen, X. N., Nguyen, H. B., Pham, V. T., Nguyen, V. T., Cao, T.A, Tu, V. C., Phan, N. M., Abe, H., Obraztsova, E. D., & Nguyen, V. C. (2022). Development of electrochemical sensor based on polyalanine/CuCl-Gr/DWCNTs for highly sensitive detection of glyphosate. Diamond and Related Materials, 128, 109312. https://doi.org/10.1016/j.diamond.2022.109312

Cao, T. T., Phan, N. D. D., Pham, V. T., Nguyen, T. H., Nguyen, V. T., Cao, T. A., Phan, V. H., Yoshida, K., Abe, H., & Nguyen, V. C. (2023). 3D porous graphene/double-walled carbon nanotubes/gold nanoparticles hybrid film for modifying electrochemical electrode. Materials Letters, 330, 133308. https://doi.org/10.1016/j.matlet.2022.133308

Tran, V. H., Pham, V. T., Nguyen, V. T., Phan, N. D. D., Mai, T. P., Nguyen, X. T., Doan, D. P., Nguyen, P. H. N., Vu, D. L., Phan, N. M., & Bui, H. T. (2021). Electrodeposited nickel–graphene nanocomposite coating: Influence of graphene nanoplatelet size on wear and corrosion resistance. Applied Nanoscience, 11(5), 1481–1490.
https://doi.org/10.1007/s13204-021-01780-0

Nguyen, V. H., Pham, A. D., Nguyen, V. H., Le, T. N., Nguyen C. M., Nguyen, V. T., Dao, T. N., & Tran, Q. N. (2020). Rapid and efficient synthesis of high-porous reduced graphene oxide/NiCo2S4 nanocomposites for supercapacitor application. Diamond and Related Materials, 106, 107850. https://doi.org/10.1016/j.diamond.2020.107850

Yang, S., Ricciardulli, A. G., Liu, S., Dong, R., Lohe, M. R., Becker, A., Squillaci, M. A., Samorì, P., Müllen, K., & Feng, X. (2017). Ultrafast Delamination of Graphite into High-Quality Graphene Using Alternating Currents. Angewandte Chemie International Edition, 56(23), 6669–6675. https://doi.org/10.1002/anie.201702076

Yu, J., Wang, L., Liu, Z., Xu, J., & Zong, Y. (2022). Electrodeposition-based fabrication of graphene/copper composites with excellent overall properties. Journal of Alloys and Compounds, 924, 166610. https://doi.org/10.1016/j.jallcom.2022.166610

Zeng, F., Sun, Z., Sang, X., Diamond, D., Lau, K. T., Liu, X., & Su, D. S. (2011). In Situ One-Step Electrochemical Preparation of Graphene Oxide Nanosheet-Modified Electrodes for Biosensors. ChemSusChem, 4(11), 1587–1591. https://doi.org/10.1002/cssc.201100319

Zhang, F., Yang, K., Liu, G., Chen, Y., Wang, M., Li, S., & Li, R. (2022). Recent advances on graphene: Synthesis, properties and applications. Composites Part A: Applied Science and Manufacturing, 160, 107051. https://doi.org/10.1016/j.compositesa.2022.107051

Zhou, Q., Lu, Y., & Xu, H. (2019). High-yield production of high-quality graphene by novel electrochemical exfoliation at air-electrolyte interface. Materials Letters, 235, 153–156. https://doi.org/10.1016/j.matlet.2018.10.016