Cao Lưu Ngọc Hạnh * , Lương Huỳnh Vủ Thanh , Đặng Huỳnh Giao , Ngô Trương Ngọc Mai , Trần Nguyễn Phương Lan Mạc Chí Tâm

* Tác giả liên hệ (clnhanh@ctu.edu.vn)

Abstract

In this study, the influence of electrospray solution (including kind of solvent, solvent concentration, and chitosan concentration) and the coaxial electrospray process (including the voltage of needle tip, spray speed, and the distance from the nozzle to the substrate) to the berberine@chitosan/piperine nanoparticles, which were prepared by electrospraying method, were investigated and analyzed. For the electrosprayed solution, two types of solvents were investigated (e.g acetic acid and citric acid), in which acetic acid was chosen to use with the optimum concentration of 90%; the optimum chitosan concentration was 4%. The optimal solution has a conductivity of 745 µS.cm-1, a viscosity of 920 mPa.s, and a surface tension of 30.9 mN.m-1. For the coaxial electrospray process, the optimal sample has a voltage of 17 kV, a spray rate of 0.1/0.2 mL/h, and a distance of 10 cm from the nozzle to the substrate. With the optimal data, the obtained berberine@chitosan/piperine nanoparticles have an almost spherical shape, a core-shell structure, a relatively uniform particle size distribution, and a particle diameter of 203.78 ± 58.56 nm.

Keywords: Berberine, chitosan nanoparticle, coaxial electrospray method, piperine

Tóm tắt

Trong nghiên cứu này, ảnh hưởng của các yếu tố đến dung dịch phun điện (như loại dung môi, nồng độ dung môi, và nồng độ chitosan) và đến quá trình phun điện đồng trục (như hiệu điện thế đặt vào đầu kim, tốc độ phun, và khoảng cách từ đầu phun đến vị trí thu mẫu) đối với vi hạt berberine@chitosan/piperine được khảo sát và phân tích. Đối với dung dịch phun điện, hai loại dung môi được khảo sát (acetic acid và citric acid), trong đó acetic acid được chọn với nồng độ tối ưu 90%; nồng độ chitosan tối ưu 4%. Dung dịch tối ưu có độ dẫn điện 745 µS.cm-1, độ nhớt 920 mPa.s, sức căng bề mặt 30,9 mN.m-1. Đối với quá trình phun điện đồng trục, mẫu tối ưu có hiệu điện thế 17 kV, tốc độ phun 0,1/0,2 mL/h, và khoảng cách từ đầu phun đến vị trí thu mẫu 10 cm. Với bộ số liệu tối ưu này, các vi hạt berberine@chitosan/piperine thu được có hình dạng gần như hình cầu, có cấu trúc lõi-vỏ, sự phân bố kích thước hạt tương đối đồng đều, đường kính hạt 203,78 ± 58,56 nm.

Từ khóa: Berberine, phương pháp phun điện đồng trục, piperine, vi hạt chitosan

Article Details

Tài liệu tham khảo

Agarwal, V., & Bajpai, M. (2014). Preparation and optimization of esomeprazole nanosuspension using evaporative precipitation–ultrasonication. Tropical Journal of Pharmaceutical Research, 13(4), 497-503. https://doi.org/10.4314/tjpr.v13i4.2

Bock, N., Dargaville, T. R., & Woodruff, M. A. (2012). Electrospraying of polymers with therapeutic molecules: state of the art. Progress in Polymer Science, 37(11), 1510-1551. https://doi.org/10.1016/j.progpolymsci.2012.03.002

Enayati, M., Ahmad, Z., Stride, E., & Edirisinghe, M. (2010). Size mapping of electric field-assisted production of polycaprolactone particles. Journal of the Royal Society Interface, 7(suppl_4), S393-S402. https://doi.org/10.1098/rsif.2010.0099.focus

Ganan-Calvo, A., Davila, J., & Barrero, A. (1997). Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science, 28(2), 249-275. https://doi.org/10.1016/S0021-8502(96)00433-8

Ghaffarzadegan, R., Khoee, S., & Rezazadeh, S. (2020). Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. DARU Journal of Pharmaceutical Sciences, 28(1), 237-252. https://doi.org/10.1007/s40199-020-00335-y

Gomez, A., & Tang, K. (1994). Charge and fission of droplets in electrostatic sprays. Physics of Fluids, 6(1), 404-414. https://doi.org/10.1063/1.868037

Greenshields, A. L., Doucette, C. D., Sutton, K. M., Madera, L., Annan, H., Yaffe, P. B., Knickle, A. F., Dong, Z., & Hoskin, D. W. (2015). Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Letters, 357(1), 129-140.
https://doi.org/10.1016/j.canlet.2014.11.017

Iqbal, J., Ejaz, S. A., Khan, I., Ausekle, E., Miliutina, M., & Langer, P. (2019). Exploration of quinolone and quinoline derivatives as potential anticancer agents. DARU Journal of Pharmaceutical Sciences, 27(2), 1–14. https://doi.org/10.1007/s40199-019-00290-3

Jayasinghe, S. N., & Edirisinghe, M. J. (2002). Effect of viscosity on the size of relics produced by electrostatic atomization. Journal of Aerosol Science, 33(10), 1379-1388. https://doi.org/10.1016/S0021-8502(02)00088-5

Kaboli, P. J., Rahmat, A., Ismail, P., & Ling, K. -H. (2014). Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. European Journal of Pharmacology, 740, 584-595. https://doi.org/10.1016/j.ejphar.2014.06.025

Kakran, M., Sahoo, N. G., Li, L., Judeh, Z., Wang, Y., Chong, K., & Loh, L. (2010). Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. International Journal of Pharm., 383(1-2), 285-292. https://doi.org/10.1016/j.ijpharm.2009.09.030

Ortiz, L. M. G., Tillhon, M., Parks, M., Dutto, I., Prosperi, E., Savio, M., Arcamone, A. G., Buzzetti, F., Lombardi, P., & Scovassi, A. I. (2014). Multiple Effects of Berberine Derivatives on Colon Cancer Cells. BioMed Research International, 924585. https://doi.org/10.1155/2014/924585

Sahibzada, M. U. K., Sadiq, A., Faidah, H. S., Khurram, M., Amin, M. U., Haseeb, A., & Kakar, M. (2018). Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug design, Development and Therapy, 12, 303-312. https://doi.org/10.2147/DDDT.S156123

Sahibzada, M. U. K., Zahoor, M., Sadiq, A., Rehman, F., Al-Mohaimeed, A. M., Shahid, M., Naz, & Ullah, R. (2021). Bioavailability and hepatoprotection enhancement of berberine and its nanoparticles prepared by liquid antisolvent method. Saudi Journal of Biological Sciences, 28(1), 327-332. https://doi.org/10.1016/j.sjbs.2020.10.006

Sailor, G. U., Ramani, V. D., Shah, N., Parmar, G. R., Gohil, D., Balaraman, R., & Seth, A. (2021). Design of Experiment Approach Based Formulation Optimization of Berberine Loaded Solid Lipid Nanoparticle for Antihyperlipidemic Activity. Indian Journal Pharmaceutical Sciences, 83(2), 204-218. https://doi.org/10.36468/pharmaceutical-sciences.766

Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. S. R. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta medica, 64(4), 353-356. https://doi.org/10.1055/s-2006-957450

Tehrani, A. A., Omranpoor, M. M., Vatanara, A., Seyedabadi, M., & Ramezani V. (2019). Formation of nanosuspensions in bottom-up approach: theories and optimization. DARU Journal of Pharmaceutical Sciences, 27(1), 451–73.
https://doi.org/10.1007/s40199-018-00235-2

Thien, D. V. H., Hsiao, S. W., & Ho, M. H. (2012). Synthesis of electrosprayed chitosan nanoparticles for drug sustained release. Nano Life, 2(01), 1250003. https://doi.org/10.1142/S1793984411000360

Wang, Y., Wen, B., Yu, H., Ding D., Zhang J. J., Zhang Y., Zhao L., & Zhang W., (2018). Berberine Hydrochloride-Loaded Chitosan Nanoparticles Effectively Targets and Suppresses Human Nasopharyngeal Carcinoma. Journal of Biomedical Nanotechnology, 14(8), 1486-1495(10). https://doi.org/10.1166/jbn.2018.2596

Wang, M., & Zhao, Q. (2019). Electrospinning and electrospray for biomedical applications. Reference Module in Biomedical Sciences: Encyclopedia of Biomedical Engineering, 330-344.
https://doi.org/10.1016/B978-0-12-801238-3.11028-1

Xu, S., Xu, Q., Zhou, J., Wang, J., Zhang, N., & Zhang, L. (2013). Preparation and characterization of folate-chitosan-gemcitabine core–shell nanoparticles for potential tumor-targeted drug delivery. Journal of Nanoscience and Nanotechnology, 13(1), 129-138. https://doi.org/10.1166/jnn.2013.6794

Xue, M., Yang, M. -X., Zhang, W., Li, X.-M., Gao, D. -H, Ou, Z. -M., Li, Z. -P., Liu, S. -H., Li, X. -J., & Yang, S. -Y. (2013). Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. International Journal of Nanomedicine, 8, 4677-4687.
https://doi.org/10.2147/IJN.S51262

Yaffe, P. B., Coombs, M. R. P., Doucette, C. D., Walsh, M., & Hoskin, D. W. (2015). Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Molecular Carcinogenesis, 54(10), 1070-1085. https://doi.org/10.1002/mc.22176

Yu, F., Ao, M., Zheng, X., Li, N., Xia, J., Li, Y., Li, D., Hou, Z., Qi, Z., & Chen, X. D. (2017). PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Delivery, 24(1), 825–33. https://doi.org/10.1080/10717544.2017.1321062

Zare, M., & Ramakrishna, S. (2020). Current Progress of Electrospun Nanocarriers for Drug Delivery Applications. Proceedings, 4, 8790. https://doi.org/10.3390/IECP2020-08790

Zhang, L., Huang, J., Si, T., & Xu R. X. (2012). Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices, 9(6), 595–612. https://doi.org/10.1586/erd.12.58

Zhang, S., Kawakami, K. (2010). One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics, 397(1-2), 211-217. https://doi.org/10.1016/j.ijpharm.2010.07.007

Zhou, Y., Liu, S., Ming, J., Li, Y., Deng, M., & He, B. (2017). Sustained release effects of berberine-loaded chitosan microspheres on in vitro chondrocyte culture. Drug Development and Industrial Pharm., 43(10), 1703-1714.