Phân rã ma trận với yếu tố thời gian trong hệ thống gợi ý
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
CSL_BIBLIOGRAPHY }Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A., 2011. Context-Aware Recommender Systems. AI Mag. 32, 67–80. doi:10.1609/aimag.v32i3.2364
Bell, R.M., Koren, Y., 2007. Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights, in: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, ICDM ’07. IEEE Computer Society, Washington, DC, USA, pp. 43–52. doi:10.1109/ICDM.2007.90
Bengio, Y., 1996. Markovian Models for Sequential Data, in: Neural Computing Surveys, Vol. 2, Pp. 129- 162, 1999.
Bennett, J., Elkan, C., Liu, B., Smyth, P., Tikk, D., 2007. KDD Cup and Workshop 2007. SIGKDD Explor Newsl 9, 51–52. doi:10.1145/1345448.1345459
Böttcher, A., Wenzel, D., 2008. The Frobenius norm and the commutator. Linear Algebra Its Appl. 429, 1864–1885. doi:10.1016/j.laa.2008.05.020
Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., 2015. Time Series Analysis: Forecasting and Control. John Wiley & Sons.
Cen, H., Koedinger, K., Junker, B., 2006. Learning Factors Analysis – A General Method for Cognitive Model Evaluation and Improvement, in: Intelligent Tutoring Systems, Lecture Notes in Computer Science. Presented at the International Conference on Intelligent Tutoring Systems, Springer, Berlin, Heidelberg, pp. 164–175. doi:10.1007/11774303_17
Dunlavy, D.M., Kolda, T.G., Acar, E., 2011a. Temporal Link Prediction Using Matrix and Tensor Factorizations. ACM Trans. Knowl. Discov. Data 5, 1–27. doi:10.1145/1921632.1921636
Feng, M., Heffernan, N., Koedinger, K., 2009. Addressing the assessment challenge with an online system that tutors as it assesses. User Model. User-Adapt. Interact. 19, 243–266. doi:10.1007/s11257-009-9063-7
Gantner, Z., Rendle, S., Schmidt-Thieme, L., 2010. Factorization Models for Context-/Time-aware Movie Recommendations, in: Proceedings of the Workshop on Context-Aware Movie Recommendation, CAMRa ’10. ACM, New York, NY, USA, pp. 14–19. doi:10.1145/1869652.1869654
Kohavi, R., 1995. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, in: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1137–1143.
Kolda, T., Bader, B., 2009. Tensor Decompositions and Applications. SIAM Rev. 51, 455–500. doi:10.1137/07070111X
Koren, Y., 2010. Factor in the Neighbors: Scalable and Accurate Collaborative Filtering. ACM Trans Knowl Discov Data 4, 1:1–1:24. doi:10.1145/1644873.1644874
Koren, Y., Bell, R., Volinsky, C., 2009. Matrix Factorization Techniques for Recommender Systems. Computer 42, 30–37. doi:10.1109/MC.2009.263
Ostertagová, E., Ostertag, O., 2012. Forecasting using simple exponential smoothing method. Acta Electrotech. Inform. 12. doi:10.2478/v10198-012-0034-2
Rendle, S., Freudenthaler, C., Schmidt-Thieme, L., 2010. Factorizing Personalized Markov Chains for Next-basket Recommendation, in: Proceedings of the 19th International Conference on World Wide Web, WWW ’10. ACM, New York, NY, USA, pp. 811–820. doi:10.1145/1772690.1772773
Ricci, F., Rokach, L., Shapira, B. & Kantor, P.B., eds. (2011)., n.d. Recommender Systems Handbook. Springer.
Sarwar, B., Karypis, G., Konstan, J., Riedl, J., 2001. Item-based Collaborative Filtering Recommendation Algorithms, in: Proceedings of the 10th International Conference on World Wide Web, WWW ’01. ACM, New York, NY, USA, pp. 285–295. doi:10.1145/371920.372071
Su, X., Khoshgoftaar, T.M., 2009. A Survey of Collaborative Filtering Techniques. Adv. Artif. Intell. doi:10.1155/2009/421425
Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L., 2010. Cost-sensitive learning methods for imbalanced data. IEEE, pp. 1–8. doi:10.1109/IJCNN.2010.5596486
Yorucu, V., 2003. The Analysis of Forecasting Performance by Using Time Series Data for Two Mediterranean Islands. Rev. Soc. Econ. Bus. Stud. 2.