Võ Thị Diễm Kiều * , Mã Thái Hòa Lý Cẩm Hùng

* Tác giả liên hệ (vothidiemkieu1990@gmail.com)

Abstract

The cashew nuts shell residue after oil extraction can be used for the production of activated carbon. This salvage could contribute to enhance economic benefits, gain more job opportunities as well as reduce environmental pollution. However, the process of producing activated carbon from the cashew nuts shell residue has not been seriously investigated and commercialized. Generally, the process has two steps – carbonization and activation, in which the former normally occurs in inert conditions whereas the latter involves the use of KOH and CO2; and the quality of the formed activated carbon is still not good enough. In this paper, the process of carbonization has been improved by adapting the heating rate in order to control the conversion rate of cellulose and hemicellulose; and by using the steam for activating carbon at 850oC. The activated carbon was obtained with better quality, e.g. BET surface area of 1171m2/g and total pore volume of 0.7cm3/g. The results showed that the conversion rate of cellulose and hemicellulose in the residue was effectively controlled and it was the key step in the process. The results from this fundamental research also provide a new concept of carbonization process for activated carbon production at an industrial scale.
Keywords: Activated carbon, cashew nut shell, heating rate, steam agent

Tóm tắt

Việc tận dụng vỏ hạt điều đã ép lấy dầu để sản xuất than hoạt tính không những đem lại hiệu quả kinh tế mà còn giải quyết các vấn đề về lao động, giảm ô nhiễm môi trường, tăng giá trị cây điều. Tuy nhiên, việc sản xuất than hoạt tính từ vỏ hạt điều chưa được tập trung nghiên cứu. Quá trình sản xuất than hoạt tính gồm 2 giai đoạn than hóa và hoạt hóa, trong đó quá trình than hóa diễn ra trong môi trường khí trơ và quá trình hoạt hóa than thường sử dụng tác nhân KOH và CO2; tuy nhiên chất lượng than vẫn chưa tốt. Trong nghiên cứu này, qui trình sản xuất than hoạt tính được cải tiến ở giai đoạn than hóa và hơi nước được dùng làm tác nhân hoạt hóa ở 850oC. Cụ thể, quá trình than hóa được chia ra làm 3 giai đoạn với các tốc độ gia nhiệt khác nhau để kiểm soát tốc độ chuyển hóa của hemicellulose và cellulose trong vỏ hạt điều, giúp giai đoạn hoạt hóa bằng hơi nước đạt hiệu quả cao hơn. Sản phẩm than hoạt tính thu được từ nghiên cứu này có chất lượng tốt hơn than hoạt tính được điều chế theo qui trình trong các nghiên cứu trước đó; diện tích bề mặt riêng có giá trị 1170m2/g và tổng thể tích lỗ xốp là 0.7cm3/g. Kết quả này chứng tỏ kiểm soát hiệu quả tốc độ chuyển hóa của hemicellose và cellulose đóng vai trò quan trọng trong quy trình sản xuất than hoạt tính. Đồng thời, kết quả đạt được sẽ là cơ sở để xây dựng quy trình sản xuất than hoạt tính trên quy mô công nghiệp.
Từ khóa: Than hoạt tính, vỏ hạt điều, hoạt hóa hơi nước, tốc độ gia nhiệt

Article Details

Tài liệu tham khảo

Bouchelta, C., Medjram, M.S., Bertrand, O., Bellat, J.P., 2008. Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied Pyrolysis. 82: 70–77.

Collard, F.X., Blin, L., 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews. 38: 594–608.

Gani, A., Naruse, I., 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy. 32:649–661.

Hadi, P., Xu, M., Ning, C., Lin, C.S.K., McKay, G., 2015. A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal. 260: 895–906.

Han, X., He, Y., Zhao, H., Wang, D., 2014.Optimization of preparation conditions of activated carbon from the residue of desilicated rice husk using response surface methodology. Korean Jounal of Chemical Engineering. 31: 1810-1817.

Jung, S.H., Oh S.J., Choi, G.G., Kim, J.S., 2014. Production and characterization of microporous activated carbons and metallurgical bio-coke from waste shell biomass. Journal of Analytical and Applied Pyrolysis. 109: 123-131.

Kumar, S.P., Ramalingam, S., Sathishkumar, K., 2011. Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean Journal of Chemical Engineering. 28:149-155.

Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D., Song, X.W., 2013. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource Technol. 136: 437–443.

Masoud, S.M., M. El-Saraf, W., M. Abdel - Halim,A., Alaa E. Ali, Essam A. Mohamed, Hamad M.I. Hasan, 2012. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. Arabian Journal of Chemistry, 1-7.

Marsh, H. and Reinoso, R., 2006. Activated Carbon. Elsevier Science, 182-265.

McGrath, T.E., Chan, W.G., Hajaligol, M.R., 2003. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis. 66: 51–70.

Mohan, D., Singh, P.K., Singh, K.V., 2008.Wastewater treatment using low cost activated carbons derived from agricultural byproducts-A case study.Journal of Hazardous Materials.152: 1045-1053.

Nabais, J., 2008. Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel processing technology. 89: 262-268.

Peng, Y., Wu, S., 2010. The structural and thermal characteristics of wheat straw hemicellulose. Journal of Analytical and Applied Pyrolysis. 88: 134–9.

Santi, Raya, I., Zakir, M., 2014.The Adsorption of Pb(II) Ions on Activated Carbon from Rice Husk, Irradiated by Ultrasonic Waves:Kinetic and Thermodynamics Studies. Journal of Natural Sciences Research.4: 18-24.

Scheirs, J., Camino, G., Tumiatti, W., 2001. Overview of water evolution during the thermal degradation of cellulose. European Polymer Jounal. 37: 933–42.

Sych, V.N., Trofymenko, S.I., Poddubnaya, O.I., Tsyba, M.M., Sapsay, V.I., Klymchuk, D.O., Puziy, A.M., 2012. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Applied Surface Science. 261: 75–82.

Tangjuank, S., Insuk, N., Tontrakoon, J., Udeye, V., 2009. Adsorption of Lead(II) and Cadmium(II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells. Engineering and Technolog. 52: 110-118.

Tsamba, J.A., Yang, W., Blasiak, W., 2006. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Processing Technology. 87: 523–530.

Viswanathan, B., Neel, P.I. and Varadarajan, T.K., 2009. Methods of Activation and Specific Applications of Carbon Materials. National center for catalysis research department of chemistry Idian institute of technology madras, 12-17.

Vitidsant, T., Suravattanasakul, T. and Damronglerd, S., 1999. Production of Activated Carbon from Palm-oil Shell by Pyrolysis and Steam Activation in a Fixed Bed Reactor. Science Asia. 25:211-222.

Zhang, J.Y. 2014. Effects of steam activation on the pore structure and surfacechemistry of activated carbon derived from bamboo waste. Applied Surface Science. 315: 279–286.

Yang, H., Xing, Z.J., Duan, Z.K., Li, M., Wang, Y., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86: 1781-1788.

Yang, J., 2012. Upgrading Ash-Rich Activated Carbon from Distilled Spirit Lees. Industrial & Engineering Chemistry Research. 51: 6037-6043.

Yuliana, M., Lien-Huong Huynh, Quoc-Phong Ho, Chi-Thanh Truong, Yi-Hsu Ju, 2012. Defatted cashew nut shell starch as renewable polymeric material: Isolation and characterization. Carbohydrate Polymers. 87: 2576– 2581.

Yuliana, M., Chi Thanh Truong, Lien Huong Huynh, Quoc Phong Ho, Yi-Hsu Ju, 2014. Isolation and characterization of protein isolated from defatted cashew nut shell: Influence of pH and NaCl on solubility and functional properties. Food science and Technology. 55: 621-626.