Phí Hoàng Nhã * Đỗ Thái Công

* Tác giả liên hệ (phihoangnha@gmail.com)

Abstract

The magnetic force distribution significantly affects electric devices' working characteristics, especially in switched reluctance motors. This distributed magnetic force determines the torque and efficiency of the motor. The examination of the magnetic distribution as well as the magnetic force is a necessary scientific matter. Therefore, two magnetic models, including the Ampere model and the virtual work principle are used to analyze and calculate the distributed magnetic force in the switched reluctance motor presented in this paper. Furthermore, switched reluctance motor which has new structure is also proposed to evaluate and compare the magnetic force distribution with the prototype switching reluctance motor structure. The survey results show that the magnetic force distributed in the two models is equivalent. The magnetic force distribution on the new switched reluctance motor structure is improved compared to the prototype motor structure.

Keywords: Force distribution, force magnetic, magnetic force model, SRM, switched reluctance motor

Tóm tắt

Sự phân bố lực từ ảnh hưởng không nhỏ tới đặc tính làm việc của các thiết bị điện từ, nhất là trong động cơ từ trở chuyển mạch. Lực từ phân bố này quyết định đến mô men và hiệu suất của động cơ. Việc kiểm tra sự phân bố từ cũng như lực từ là vấn đề khoa học cần thiết. Do đó, hai mô hình từ gồm mô hình Ampere và mô hình dựa trên nguyên lý công ảo được dùng để phân tích, tính toán lực từ phân bố trong động cơ từ trở chuyển mạch được trình bày trong bài báo này. Hơn nữa, động cơ từ trở chuyển mạch có cấu trúc mới cũng được đưa ra để đánh giá, so sánh sự phân bố lực từ với cấu trúc động cơ từ trở chuyển mạch nguyên mẫu. Kết quả khảo sát cho thấy lực từ được phân bố theo hai mô hình là tương đương nhau và lực từ phân bố trên cấu trúc động cơ từ trở chuyển mạch mới được cải thiện hơn so với cấu trúc động cơ nguyên mẫu.

Từ khóa: Động cơ từ trở chuyển mạch, SRM, lực từ, mô hình lực từ, phân bố lực

Article Details

Tài liệu tham khảo

Ahn, J. W., & Lukman, G. F. (2018). Switched reluctance motor: Research trends and overview. CES Trans. Electr. Mach. Syst, 2(4), 339–347. https://doi.org/10.30941/CESTEMS.2018.00043

Anwar, M. N., & Husain, I. (2000). Radial Force Calaculation and Acoustic Noise Prediction in Switched Reluctance Machines. IEEE, 36(6), 1589 – 1597. https://doi.org/10.1109/28.887210

Bilgin, B., Howey, B., Callegaro, A. D., Liang, J., Kordic, M., Taylor, J. & Emadi, A. (2020). Making the case for switched reluctance motors for propulsion applications. IEEE Trans. Veh. Technol., 69(7), 7172–7186. https://doi.org/10.1109/TVT.2020.2993725

Chai, J. Y., &, Liaw, C. M. (2010). Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling. IET electric Power Applications, 4(5), 380–396.

Sasaki, H., Hidaka, Y. & Igarasgi, H. (2022). Prediction of IPM machine torque characterítíc using deep learning based on magnetic field distribution. IEEE Access, 10, 60814-60822. https://doi.org/10.1049/iet-epa.2009.0061

Chithrabhanu, A., & Vasudevan, K. (2021). Current Sharing Funtion Based Torque Ripple Reduction Strategy for Switched reluctance moror drives. IEEE 12th Energy Conversion Congress & Expositive Asia.
https://doi.org/10.1109/ECCE-Asia49820.2021.9479354

Elmar, K., Keywan, R., Valentina, B., Nils, P., Detlef P., John P., & Ottmar, E.. (2015) Introduction to the Ampere model intercomparison studies on the economics of climate stabilization. Technological Forecasting & Social Change, 90, 1-7. https://doi.org/10.1016/j.techfore.2014.10.012

Garrigan, N. R., Soong, W. L., Stephens, C. M., Storace, A., & Lipo, T. A. (1999). Radian force characteristics of a switched reluctance machine. IEEE, 2250-2258. https://doi.org/10.1109/IAS.1999.799158

Hirsinger, L., & Billardon, R. (1995). Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Trans. Magn., 31, 1877–1880. Garrigan, N. R., Soong, W. L., Charles, M. S., Albert, S. & Thomas, A. L. (1999). Radial Force Characteristics of a Switched Reluctance Machine. IEEE, 2250 – 2258.
https://doi.org/10.1109hy/20.376404

Hongbiao, H., Yunkai, G., Yongzhen, Z., Sanming, D., & He, L. (2015). Effect of magnetic field distribution of friction surface on friction and weả properties of 45 steel in DC magnetic field. Wear, 328, 422-435. https://doi.org/10.1016/j.wear.2015.02.062

Jian, L., & Tunhyun, C. (2010). Dynamic reduction of unbalanced magnetic force and vibration in Switched Reluctance Motor by the parallel paths in windings. Mathematics and Computer in Simulation, 81, 407-419. https://doi.org/10.1016/j.matcom.2010.08.009

Li, S., Zhang, S., Habetler, T. G., & Harley, R. G. (2019). Modeling, design optimization, and applications of switched reluctance machines—A review. IEEE Trans. Ind. Appl., 55(3), 2660–2681. https://doi.org/10.1109/TIA.2019.2897965

Lin, C. H. (2019). Adaptive nonlinear backstepping control using mended recurrent Romanovski polynomials neural network and mended particle swarm optimization for switched reluctance motor drive system. Trans. Inst. Meas. Control, 41(14), 4114-4128. https://doi.org/10.1177/0142331219851920

Nhã, P. H., Phi, P. H., & Thủy, Đ. Q. (2018). Mô hình mạch từ trở tương đương trong động cơ từ trở kiểu mới. Tạp chí Nghiên cứu KH&CN Quân sự, 54, 67-74.

Reyne, G., Sabonnadiere, J. C., Coulomb, J. L., & Brissonneau, P. (1987). A survey of the main aspects of magnetic forces and mechanical behavior of ferromagnetic materials under magnetization’. IEEE Trans. Magn., 23, 3765-3767. https://doi.org/10.1109/TMAG.1987.1065518

Ren, Z. (1994). Comparison of different force calculation methods in 3D finite element modeling. IEEE Trans. Magn., 30, 3471–3474. https://doi.org/10.1109/20.312686

Robert, M., Landis, C. M. & Salomon, M. A. (2007). A principle of virtual work for combined electrostatic and mechanical loading of materials. International journal of non-linear mechanics, 42, 831-838. https://doi.org/10.1016/j.ijnonlinmec.2007.03.008

Se, H. L., San, J. H., Hong, S. C., Joon, H. L. & Han, P. (2004). Magnetic force distributions in saturated magnetic system using magnetic charge method and other methods. IEEE Transactions on Applied Superconductivity, 14(2), 682-685. https://doi.org/10.1109/TASC.2004.830029

Sun, J., Cao, G. Z., Huang, S. D., Peng, Y., He, J. & Qian, Q. Q. (2019). Sliding mode observer based position estimation for sensorless control of the planar switched reluctance motor. IEEE Sccess, 7, 61034-61045. https://doi.org/10.1109/ACCESS.2019.2913702

Thomas, P., & Wolfgang, M. (2010). A comparison of different magnetic force distributions with respect to mechanical deformations using a hybrid calculation method. 2010 ursl international sysposium on electromagnetic theory, 898-901.

Tetbirt, A., Bouaziz, M. N., & Tahar Abbes, M. (2016). Numerical study of magnetic effect on the velocity distribution field in a macro/micro-scale of micropolar and viscous fluid in vertical channel. Journal of Molecular Liquids, 216, 203-110. https://doi.org/10.1016/j.molliq.2015.12.088

Valencia, D., Tarvirdilu, R., Garcia, C., Rodriguez, J. & Emadi, A. (2021). Vision, Challenges, and Future trends of model predictive control in switched reluctance motor drives. IEEE, 9, 69926-69937. https://doi.org/10.1109/ACCESS.2021.3078366

Vandevelde, L., & Melkebeek, J. A. (2001). A survery of magnetic force distributions based on different magnetization models and on the virtual work principle. IEEE Trans. Magn, 37,3405-3409.
https://doi.org/10.1109/20.952624

Van, M., Kasper, K., Doncker, R. W., & Hameyer, K. (2012) .Material parameters for the structural dynamic simulation of electrical machines. Proceedings-20th International Conference on Electrical Machines, 2994-3000.

Wang, H., Lee, D., & Park, T. (2011). Hybrid stator-pole switched reluctance motor to improve radial force for bearingless application. Energy Conversion and Management, 52(2), 1371-1376. https://doi.org/10.1016/j.enconman.2010.09.035

Xu, X., & Ou, J. (2015). Force identification of dynamic systems using virtual work principle. Journal of Sound and Vibration, 337,71-94. https://doi.org/10.1016/j.jsv.2014.10.005

Yuning, S., Hang, W., Zhongyong, L. & Shoũiang, L. (2022). Simulation study on magnetic field distribution of PEMFC. International Journal of Hydrogen Energy, 47(78), 33439-33452. https://doi.org/10.1016/j.ijhydene.2022.07.228