Luong Huynh Vu Thanh * , Tran Nguyen Phuong Lan , Tran Thi Bich Quyen , Ha Quoc Nam and Le Phuoc Bao Tho

* Corresponding author (lhvthanh@ctu.edu.vn)

Abstract

This study is aimed to evaluate adsorption behavior of Cr(VI) ion in aqueous solution by using  Fe3O4@SiO2 with SiO2 derived from rice husk ash. The magnetic synthesized absorbent is generated at simple, inexpensive and environmentally friendly conditions. Scanning electron microscope (SEM) analysis illustrated that SiO2 nanoparticles, Fe3O4 N nanoparticles and Fe3O4@SiO2 particles were in fairly spherical shape with diameter in a range of 5 nm to 10 nm, 30 nm to 50 nm and 100 nm to 500 nm, respectively. The experimental results showed that Fe3O4@SiO2 particles could remove 92.49% of Cr(VI) at conditions of pH 2.5, contact time of 30 min, Fe3O4@SiO2 mass of 0.1 g, and Cr(VI) initial concentration of 100 mg/L. The adsorption of Cr(VI) ion onto the absorbent can be considered as monolayer physisorption onto heterogeneous surface with maximum adsorption capacity of 166.67 mg/g. The bonding energy of adsorbent and adsorbate is 7.1795 kJ/mol, and CrxFe1-x(OH)3 precipitates is adsorbed into pores of SiO2 shell can be examined as the main mechanism of the adsorption.
Keywords: Cr(VI), Fe3O4, adsorption, SiO2, rice husk ash

Tóm tắt

Nghiên cứu này nhằm đánh giá khả năng hấp phụ ion kim loại nặng Cr(VI) trong nước bằng hạt nano Fe3O4@SiO2 với SiO2 có nguồn góc từ tro trấu. Vật liệu hấp phụ từ tính được tổng hợp ở các điều kiện đơn giản, kinh tế và thân thiện với môi trường. Phân tích kính hiển vi điện tử quét (SEM) cho thấy hạt nano SiO2, hạt nano Fe3O4 và vật liệu hấp phụ Fe3O4@SiO2 có hình dạng gần hình cầu với đường kính lần lượt là 5 nm đến 10 nm, 30 nm đến 50 nm và 100 nm đến 500 nm. Kết quả hấp phụ cho thấy Fe3O4@SiO2 có thể loại bỏ 92,49% Cr(VI) tại pH 2,5, thời gian hấp phụ 30 phút, khối lượng Fe3O4@SiO2 0,1 g và nồng độ Cr(VI) ban đầu 100 mg/L. Đây là quá trình hấp phụ vật lý đơn lớp trên bề mặt không đồng nhất với dung lượng hấp phụ cực đại là 166,67 mg/g. Năng lượng liên kết giữa vật liệu hấp phụ và chất bị hấp phụ là E = 7,1795 kJ/mol và kết tủa CrxFe1-x(OH)3 bị hấp phụ trực tiếp trên bề mặt lỗ xốp của SiO2được xem là cơ chế chính của quá trình hấp phụ.  
Từ khóa: Cr(VI), Fe3O4, hấp phụ, SiO2, tro trấu

Article Details

References

Abadin, H., A. Ashizawa, Y. Stevens et al., 2007. Toxicological Profile for Lead. In: Abadin, H. (Ed.). Atlanta (GA): Agency for Toxic Substances and Disease Registry (US). Agency for toxic substances and disease registry (ATSDR) toxicological profiles.

Abbas, M., B.P. Rao, M.N. Islam, S. Naga, M. Takahashiand C. Kim, 2014. Highly stable-silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process. Ceramics International 40(1): 1379-1385.

Bakheet, A.A.A.A. and X. Zhu, 2017. Separation/analysis of congored by using poly (ionic liquid) immobilized magnetic nanoparticles magnetic solid phase extraction coupled with fluorescence spectrophotometry. Science 5(6): 113-118.

Bhaumik, M., A. Maity, V. Srinivasuand M.S. Onyango, 2011. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4magnetic nanocomposite. Journal of Hazardous Materials 190(1-3): 381-390.

Chen, Y., B. Wang, J. Xin, P. Sunand D. Wu, 2018. Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera. Ecotoxicology and environmental safety 164: 440-447.

Choolaei, M., A.M. Rashidi, M. Ardjmand, A. Yadegariand H. Soltanian, 2012. The effect of nanosilicaon the physical properties of oil well cement. Materials Science and Engineering: A 538: 288-294.

EPA, U., 1999. Integrated risk information system (IRIS) on chromium (III). National Center for Environmental Assessment Office of Research and Development, Washington.

Fang, X., Z. Fang, P.K.E. Tsang, W. Cheng, X. Yanand L. Zheng, 2014. Selective adsorption of Cr(VI) from aqueous solution by EDA-Fe3O4nanoparticles prepared from steel pickling waste liquor. Applied Surface Science 314: 655-662.

Feng, Z., N. Chen, C. Fengand Y. Gao, 2018. Mechanisms of Cr(VI) removal by FeCl3-modified lotus stem-based biochar (FeCl3@LS-BC) using mass-balance and functional group expressions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 551: 17-24.

Fu, F.and Q. Wang, 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92.

Health, U.D.O. and H. Services, 1993. Registry of toxic effects of chemical substances (RTECS, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD 4.

Jiang, L., X. Yuan, G. Zeng, J. Liang, Z. Wuand H. Wang, 2018. Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity. Environmental Science: Nano 5(3): 599-615.

Kastner, J.R., S. Mani and A. Juneja, 2015. Catalytic decomposition of tar using iron supported biochar. Fuel processing technology 130: 31-37.

Lu, W., J. Li, Y. Sheng, X. Zhang, J. You and L. Chen, 2017. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution. Journal of colloid and interface science 505: 1134-1146.

Miretzky, P. and A.F. Cirelli, 2010. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of hazardous materials 180(1-3): 1-19.

Morel, A.-L., S.I. Nikitenko, K. Gionnetet al., 2008. Sonochemicalapproach to the synthesis of Fe3O4@SiO2core−shell nanoparticles with tunable properties. ACS nano 2(5):847-856.

Pang, Y., G. Zeng, L. Tang et al., 2011. Preparation and application of stability enhanced magnetic nanoparticles for rapid removal of Cr(VI). Chemical Engineering Journal 175: 222-227.

Rahman, Z.U., T. Zhang, S. Cui and D. Wang, 2015. Preparation and characterization of magnetic nanocomposite catalysts with double Au nanoparticle layers. RSC Advances 5(121): 99697-99705.

Rajput, S., C.U. Pittman Jr and D. Mohan, 2016. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of colloid and interface science 468: 334-346.

Rathnayake, S.I., W.N. Martens, Y. Xi, R.L. Frost and G.A. Ayoko, 2017. Remediation of Cr(VI) by inorganic-organic clay. Journal of colloid and interface science 490: 163-173.

Saini, J., V. Gargand R. Gupta, 2018. Removal of methylene blue from aqueous solution by Fe3O4@Ag/SiO2nanospheres: Synthesis, characterizationand adsorption performance. Journal of Molecular Liquids 250: 413-422.

Sheikhmohammadi, A., Z. Dahaghin, S.M. Mohseniet al., 2018. The synthesis and application of the SiO2@Fe3O4@MBT nanocomposite as a new magnetic sorbent for the adsorption of arsenate from aqueous solutions: Modeling, optimization, and adsorption studies. Journal of Molecular Liquids 255: 313-323.

Subhan, F., S. Aslam, Z. Yan, M. Khan, U. Etimand M. Naeem, 2019. Effective adsorptive performance of Fe3O4@SiO2core shell spheres for methylene blue: kinetics, isothermand mechanism. Journal of Porous Materials 26(5): 1465-1474.

Thakur, S.S.and G.S. Chauhan, 2014. Gelatin–silica-based hybrid materials as efficient candidates for removal of chromium (VI) from aqueous solutions. Industrial & Engineering Chemistry Research 53(12): 4838-4849.

Bộ Tài nguyên và Môi trường, 2011. QCVN 40:2011/BTNMT, ngày 15/02/2012, Quy chuẩn kỹ thuật quốc gia về nước thải công nghiệp.

NguyễnTrí Tuấn, NguyễnHữu Minh Phú, Hồ Ngọc Tri Tân và ctv., 2014. Tổng hợp hạt nano SiO2từ tro vỏ trấu bằng phương pháp kết tủa. Tạp chí Khoa học Trường Đại học Cần Thơ, Phần A: Khoa học Tự nhiên, Công nghệ và Môi trường 32: 120-124.

Venkateswaran, S., R. Yuvakkumarand V. Rajendran, 2013. Nano silicon from nano silica using natural resource (RHA) for solar cell fabrication. Phosphorus, Sulfur, and Silicon and the Related Elements 188(9): 1178-1193.

Wang, H., X. Yuan, Y. Wu et al., 2015a. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. Journal of hazardous materials 286: 187-194.

Wang, J., S. Zheng, Y. Shao, J. Liu, Z. Xuand D. Zhu, 2010. Amino-functionalized Fe3O4@SiO2core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of colloid and interface science 349(1): 293-299.

Wang, K., G. Qiu, H. Cao and R. Jin, 2015b. Removal of chromium (VI) from aqueous solutions using Fe3O4magnetic polymer microspheres functionalized with amino groups. Materials 8(12): 8378-8391.

Wang, L., W. Liu, T. Wangand J. Ni, 2013. Highly efficient adsorption of Cr(VI) from aqueous solutions by amino-functionalized titanatenanotubes. Chemical engineering journal 225: 153-163.

Wang, S., J. Tang, H. Zhao, J. Wan and K. Chen, 2014. Synthesis of magnetite–silica core–shell nanoparticles via direct silicon oxidation. Journal of colloid and interface science 432: 43-46.

Wang, Y., Y. Zhang, C. Hou and M. Liu, 2016a. Mussel-inspired synthesis of magnetic polydopamine–chitosan nanoparticles as biosorbentfor dyes and metals removal. Journal of the Taiwan Institute of Chemical Engineers 61: 292-298.

Wang, Z., J. Xu, Y. Hu et al., 2016b. Functional nanomaterials: Study on aqueous Hg (II) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles. Journal of the Taiwan Institute of Chemical Engineers 60: 394-402.

Wu, L., L. Liao, G. Lvand F. Qin, 2015. Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. Journal of contaminant hydrology 179: 1-9.

Xiao, R., J.J. Wang, R. Li et al., 2018. Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere 208: 408-416.

Xiong, T., X. Yuan, H. Wang et al., 2018. Implication of graphene oxide in Cd-contaminated soil: A case study of bacterial communities. Journal of environmental management 205: 99-106.

Zhang, L., H. Wang, W. Yu et al., 2012. Facile and large-scale synthesis of functional poly (m-phenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. Journal of Materials Chemistry 22(35): 18244-18251.

Zhu, H., J. Wu, M. Fang et al., 2017. Synthesis of a core–shell magnetic Fe3O4–NH2@PmPD nanocomposite for efficient removal of Cr(VI) from aqueous media. RSC Advances 7(58): 36231-36241.