Application of object tracking techniques in the analysist of activity customer in suppermarket
Abstract
Tóm tắt
Article Details
References
CSL_BIBLIOGRAPHY }Lavee, G., Rivlin, E., & Rudzsky, M. (2009). Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in video. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(5), 489–504.
Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011). BRISK: Binary robust invariant scalable keypoints. In 2011 International conference on computer vision (pp. 2548–2555). IEEE.
Lucas, B. D., Kanade, T., & others. (1981). An iterative image registration technique with an application to stereo vision. In IJCAI (Vol. 81, pp. 674–679).
Naotoshi Seo. (2014). ImageClipper. C++.
Nebehay, G., & Pflugfelder, R. (2014). Consensus-based matching and tracking of keypoints for object tracking. In IEEE Winter Conference on Applications of Computer Vision (pp. 862–869). IEEE.
Nebehay, G., & Pflugfelder, R. (2015). Clustering of static-adaptive correspondences for deformable object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2784–2791).
Ragland, K., & Tharcis, P. (2014). A survey on object detection, classification and tracking methods. Int. J. Eng. Res. Technol, 3(11).
Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. Computer Vision–ECCV 2006, 430–443.
Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE international conference on (pp. 2564–2571). IEEE.
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I–I). IEEE.